DIESEL FUEL EFFECTS ON LOCOMOTIVE EXHAUST EMISSIONS

Ву

Steven G. Fritz, P.E.

FINAL REPORT

Prepared For

California Air Resources Board
Stationary Source Division - Fuels Section
P.O. Box 2815
Sacramento, CA 95814

October 2000

DIESEL FUEL EFFECTS ON LOCOMOTIVE EXHAUST EMISSIONS

By

Steven G. Fritz, P.E.

FINAL REPORT

SwRI Project No. 08.02062

Prepared For

California Air Resources Board
Stationary Source Division - Fuels Section
P.O. Box 2815
Sacramento, CA 95814

October 2000

Reviewed by:

Terry L. Vilman, Manager

Department of Emissions Research Automotive Products and Emissions

Research Division

Approved:

Charles T. Hare, Director

Department of Emissions Research

Automotive Products and Emissions

Research Division

FOREWORD

The work covered by this report was performed for the California Air Resources Board, as outlined in SwRI Proposal No. 08-23088C dated August 10, 1998. Locomotive testing was performed between August 1998 and May 1999.

The liaison with the Association of American Railroads (AAR) was Mr. Michael J. Rush, Associate General Counsel of the AAR Law Department. Three EMD model SD70MAC locomotives were provided by the Burlington Northern Santa Fe Railroad (BNSF). Mr. Mark P. Stehly coordinated BNSF's participation in the program. Three GE Model DASH9-44CW locomotives were provided by the Union Pacific Railroad (UP). Mr. Kent D. Carter of UP coordinated UP's participation in the program. A number of people from the Electro-Motive Division of General Motors Corporation (EMD) and the Transportation Systems Division of the General Electric Company (GE) were contacted on several occasions for information and advice related to the operation of their respective locomotives, and their participation and support is greatly appreciated.

This project was performed by the SwRI Department of Emissions Research of the Automotive Products and Emissions Research Division, under the supervision of Mr. Charles T. Hare, Director, and Mr. Terry L. Ullman, Manager. The Project Manager and Principal Investigator for SwRI was Mr. Steven G. Fritz, Principal Engineer. SwRI technical personnel making significant contributions to the project were Mr. Patrick M. Merritt, Senior Research Scientist; Mr. E. Robert Fanick, Senior Research Scientist; Mr. Kenneth B. Jones, Research Technologist; Mr. C. Eddie Grinstead, Research Technologist; Mr. Jeff Mathis, Senior Technician; Mr. Ernest San Miguel, Technician; and Ms. Kathy Jack, Research Assistant, all of the Department of Emissions Research; and Dr. Joe Pan, Manager of the High Resolution Mass Spectrometry Section, and Mr. Mike Dammann, Manager of the Inorganics and Radiochemistry Section, both within the Analytical and Environmental Chemistry Department of the Chemistry and Chemical Engineering Division.

ii

TABLE OF CONTENTS

	<u>Page</u>
FOREW	/ORD ii
LIST OF	F FIGURES v
LIST OF	TABLES vi
LIST OF	F ABBREVIATIONS vii
EXECU	TIVE SUMMARY viii
1. 11	NTRODUCTION 1
II. T	ECHNICAL APPROACH 2
A E C E	B. Engine Power Measurement
F	Unregulated Exhaust Emissions Test Procedures

iii

REGULATED EMISSION TEST RESULTS	21
UNREGULATED EMISSIONS TEST RESULTS	27
B. Formaldehyde, Acetaldehyde, Acrolein C. PAH D. Volatile Organic Fraction of total particulate (VOF) E. Metal Particulate F. Sulfates	30 33 36 37 38
DDC SERIES 60 DIESEL ENGINE TEST RESULTS	42
SUMMARY	52
ENDICES	
BNSF No. 9693 Test Data BNSF No. 9754 Test Data BNSF No. 9696 Test Data UP No. 9724 Test Data UP No. 9715 Test Data UP No. 9733 Test Data Benzene and 1,3-Butadiene Data Formaldehyde, Acetaldehyde, and Acrolein Data PAH Data Volatile Organic Fraction (VOF) of Particulate Data Metal Particulate Data Sulfate Data Soluble Organic Fraction (SOF) of Particulate Data DDC Series 60 Test Data	
	A. EMD B. GE UNREGULATED EMISSIONS TEST RESULTS A. Benzene and 1,3-Butadiene B. Formaldehyde, Acetaldehyde, Acrolein C. PAH D. Volatile Organic Fraction of total particulate (VOF) E. Metal Particulate F. Sulfates G. Soluble Organic Fraction DDC SERIES 60 DIESEL ENGINE TEST RESULTS SUMMARY NDICES BNSF No. 9693 Test Data BNSF No. 9754 Test Data BNSF No. 9696 Test Data UP No. 9724 Test Data UP No. 9715 Test Data UP No. 9733 Test Data Benzene and 1,3-Butadiene Data Formaldehyde, Acetaldehyde, and Acrolein Data PAH Data Volatile Organic Fraction (VOF) of Particulate Data Metal Particulate Data Sulfate Data Soluble Organic Fraction (SOF) of Particulate Data

LIST OF FIGURES

<u>Figur</u>	<u>e</u>
1	Effect of Test Fuel Sulfur Content on PM Emissions
2	Particulate Dilution Tunnel
3	Particulate Sample Probes Located Within Dilution Tunnel
4	SwRI Smokemeter Installed on a Locomotive
5	Average Composite Benzene Emissions
6	Average Composite 1,3-Butadiene Emissions
7	Composite Formaldehyde Emissions Summary
8	Composite Acetaldehyde Emissions Summary
9	Composite Acrolein Emissions Summary
10	Composite PM-Phase PAH Emissions
11	Composite Gas-Phase PAH Emissions
12	Sulfate Emissions Summary
13	SOF of PM Emissions Summary
14	Effect of Test Fuel Sulfur Content on PM Emissions

LIST OF TABLES

<u>Table</u>	<u>Pa</u>	<u>ge</u>
1	Average Change in Regulated Locomotive Exhaust Emissions	
	Between Test Fuels	ix
2	Locomotives Tested	3
3	Properties of Diesel Fuels Used in Locomotive Testing	7
4	Metal Content of Test Fuels	8
5	PAH Target Compound List	17
6	Representative Detection Limit Ranges for Sulfate	20
7	EMD SD70MAC Emissions Summary	21
8	Average Change in Regulated EMD Locomotive Exhaust Emissions	
	Between Locomotive Test Fuels	22
9	EMD SD70MAC Smoke Opacity Summary	23
10	GE DASH9-44CW Emissions Summary	24
11	Average Change in Regulated GE Locomotive Exhaust Emissions	
	Between Locomotive Test Fuels	25
12	GE DASH9-44CW Smoke Opacity Summary	26
13	Benzene and 1,3-Butadiene Emissions Summary	28
14	Formaldehyde, Acetaldehyde, Acrolein Emissions Summary	31
15	EPA Line-Haul Composite PAH Emissions	33
16	Sulfate Emission Summary	39
17	SOF Emissions Summary	41
18	DDC Series 60 Transient FTP Test Results Using Locomotive Test Fuels	45
19	DDC Series 60 Transient FTP PM Analysis	46
20	DDC Series 60 AAR 3-mode Steady-State Test Results	
	Using Locomotive Test Fuels	49
21	Comparison of Fuel Effects On Locomotives and a DDC Series 60 Engine	50
22	Average Change in Regulated Locomotive Exhaust Emissions	
	Between Test Fuels	53

LIST OF ABBREVIATIONS

AAR Association of American Railroads
ARB California Air Resources Board
API American Petroleum Institute

ASTM American Society for Testing and Materials
BNSF Burlington Northern Santa Fe Railway

BSFC brake specific fuel consumption CFR Code of Federal Regulations

CO carbon monoxide CO₂ carbon dioxide cSt centistokes

DFI/GC direct filter injection, gas chromatography

EMD Electro-Motive Division of General Motors Corporation

EP end point

EPA Environmental Protection Agency

°F degrees Fahrenheit f/a mass fuel to dry air ratio

g gram gal gallon H₂O water

HC hydrocarbons

HFID heated flame ionization detector

hp horsepower

hr hour

IBP initial boiling point

in inch
lb pound
min minute

NDIR non-dispersive infrared NO, oxides of nitrogen

O₂ oxygen

OEM original equipment manufacturer PAH polycyclic aromatic hydrocarbons

PHS Public Health Service
PM particulate matter
PN part number

rpm revolutions per minute

sec seconds

SOF soluble organic fraction

SwRI Southwest Research Institute

TDC top dead center

UP Union Pacific Railroad VOF volatile organic fraction

wt weight % percent

EXECUTIVE SUMMARY

This project quantified exhaust emissions of two types of locomotive engines using selected diesel fuels. Locomotive exhaust emission and fuel consumption measurements were performed on six late-model locomotives: three 4,000 hp, EMD SD70MAC, and three 4,400 hp, GE DASH9-44CW. All six locomotives were provided by two participating railroads, the Burlington Northern Santa Fe (BNSF), and the Union Pacific (UP). Emission testing was performed between August 1998 and May 1999 at the Southwest Research Institute™ (SwRI) Locomotive Exhaust Emissions Test Center in San Antonio, Texas. This unique facility was established in 1992 in cooperation with the Association of American Railroads (AAR).

This report contains results of regulated and selected unregulated exhaust emission measurements made on six locomotives, each operating on commercially available CARB fuel, Federal on-highway fuel with a sulfur level of 330 ppm (0.033 weight percent), and a high-sulfur (4,760 ppm) nonroad fuel. Due to the fact that the sulfur level of the "high-sulfur" fuel was higher than nonroad diesel fuel typically purchased by the railroads, a fourth fuel was also used in the three GE locomotives, which was a nonroad fuel with a sulfur level of 3,190 ppm (0.32 percent). In this report, this fourth fuel is referred to as the "0.3 percent sulfur" fuel, and is considered to be more representative of high sulfur nonroad diesel fuels used by the railroads.

Table 1 gives the average percent change in the line-haul composite emissions between test fuels for the three EMD locomotives. CARB fuel reduced composite NO_X emissions by an average of 4 percent from levels for on-highway fuel, and by an average of 6 percent from levels for high-sulfur, nonroad fuel. CARB fuel reduced composite PM emissions by an average of 3 percent from levels for on-highway fuel, and by an average of 16 percent from levels for high-sulfur, nonroad fuel. Using on-highway fuel reduced composite PM emissions by 13 percent from levels for high-sulfur, nonroad fuel.

Table 1 also gives the average percent change in the line-haul composite emissions between test fuels for the three GE locomotives. CARB fuel reduced composite NO_{χ} emissions by an average of 3 percent from levels for on-highway fuel, and by an average of 7 percent from levels for high-sulfur, nonroad fuel. These results are very consistent with the NO_{χ} response observed for the EMD locomotives.

TABLE 1. AVERAGE CHANGE IN REGULATED LOCOMOTIVE EXHAUST EMISSIONS BETWEEN TEST FUELS

FUEL CHANGE	Percent change in Average Line-Haul Composite Emissions ^a			
	НС	СО	NO _x	PM
EMD SD70MAC				
CARB vs. On-Hwy	+1%	+ 7 %	- 4 %	- 3 %
CARB vs High Sulfur ⁵	+ 3 %	+8%	- 6 %	- 16 %
On-Hwy vs High Sulfur ^b	+1%	+ 1 %	- 3 %	- 13 %
GE DASH9-44CW				
CARB vs On-Hwy	- 4 %	- 1 %	- 3 %	- 3 %
CARB vs High Sulfur ^b	+ 2 %	- 2 %	- 7 %	- 39 %
On-Hwy vs High Sulfur ^b	+6%	- 2 %	- 4 %	- 38 %
CARB vs 0.3% Sulfur °	+ 1 %	- 3 %	- 5 %	- 27 %
On-Hwy vs 0.3% Sulfur°	+ 4 %	- 2 %	- 2 %	- 25 %

ix

Notes: a - EPA Line-Haul duty cycle weighted emissions.

b - 4,670 ppm sulfur nonroad fuel, EM-2664-F

c - 0.3% Sulfur fuel = 3,190 ppm sulfur, EM-2708-F

Using the 0.3 percent sulfur nonroad fuel as the basis of comparison, CARB fuel reduced composite NO_x emissions for the GE locomotives an average of 5 percent. Onhighway fuel reduced composite NO_x emissions by 2 percent compared to levels from the 0.3 percent sulfur, nonroad fuel. Table 1 also shows that switching from the high-sulfur (0.476 percent sulfur) fuel to the 0.3 percent sulfur fuel reduced the average composite NO_x emissions from the GE locomotives by 2 percent.

In the GE locomotives, using CARB fuel reduced the average composite PM emissions by an average of 3 percent compared to on-highway fuel, and by an average of 39 percent compared to high-sulfur, nonroad fuel. Using on-highway fuel, average composite PM emissions were reduced by 38 percent compared to high-sulfur, nonroad fuel. Using the 0.3 percent sulfur nonroad fuel as the basis of comparison, CARB fuel reduced composite PM emissions an average of 27 percent compared to 0.3 percent sulfur, nonroad fuel, and using on-highway fuel reduced composite PM emissions by 25 percent compared to the 0.3 percent sulfur, nonroad fuel.

For the two locomotive models tested, switching from the high-sulfur, nonroad diesel fuel to CARB fuel reduced the average NOx emissions by 6-7 percent, which corresponds to a reduction of about 0.8 g/hp-hr. This NO_{X} reduction is similar to that observed for onhighway diesel engines. No formal statistical analysis of the data was performed by SwRI, but test results were provided to ARB and the AAR for their analysis.

Sulfate analysis of the PM samples indicated that the PM reduction with CARB fuel was largely attributable to the reduced sulfur content of the fuel, and on a g/hp-hr basis, the PM response was essentially the same for each locomotive model. Figure 1 shows the effect of fuel sulfur content on the PM emissions from the two models of locomotives tested. HC and CO emissions were relatively insensitive to the fuels tested, as were smoke emissions. Regardless, the ARB and AAR statistical analyses of the data should be used for the final determination of statistically significant changes in the emissions between fuels.

FIGURE 1. EFFECT OF TEST FUEL SULFUR CONTENT ON PM EMISSIONS

χi

I. INTRODUCTION

This project quantified the exhaust emissions from two types of locomotive engines using selected diesel fuels. Locomotive exhaust emission and fuel consumption measurements were performed using three fuels on six locomotives: three high-power, late-model EMD, and three high-power, late-model GE locomotives were tested. A fourth fuel was added after the program began, and was tested in the three GE locomotives. Locomotive selection was the responsibility of the participating railroads, which were the Burlington Northern Santa Fe (BNSF), and the Union Pacific Railroad (UP).

Testing was performed at the Southwest Research Institute (SwRI) Locomotive Exhaust Emissions Test Center in San Antonio, Texas. This unique facility was established in 1992 in cooperation with the Association of American Railroads (AAR), and is the only non-OEM facility capable of performing locomotive exhaust emission tests. To date, over 50 locomotives have been tested by SwRI in work for the AAR, the OEM's, and the U.S. EPA.

A Technical Oversight Committee composed of representatives from ARB, BNSF, UP, and the AAR was formed to provide SwRI with technical direction throughout the project's duration.

1

II. TECHNICAL APPROACH

Locomotive exhaust emission tests for this project were performed by SwRI at the Locomotive Exhaust Emissions Test Center in San Antonio, Texas. This facility was established in August 1993 in cooperation with the AAR and what was then the Southern Pacific Transportation Company (SP).

Presented below is an overview of the technical approach used to conduct locomotive exhaust emissions testing. Included is a description of the locomotives selected for testing, engine power measurement, fuel consumption measurement, the test fuels used in this program, exhaust emissions test procedures, analytical procedures, particulate measurement procedures, and smoke opacity test procedures.

A. Test Locomotives

Selection of the locomotives for emission testing was the responsibility of the BNSF and UP railroads. The locomotives selected for this study represented current production locomotives covering 1995 and 1996 model years.

Three GE locomotives were provided by UP, and three EMD locomotives were provided by BNSF. Table 2 summarizes the road number, locomotive date of manufacture, locomotive serial number, engine model, and engine serial number for each locomotive.

The line-haul locomotives used in this work were equipped with the "dynamic brake" feature in which the electric motors used for traction can be reverse-excited to become generators to slow the train. The electrical power generated by braking is dissipated in resistance grids contained on the locomotive. The test locomotives, with the self-load feature, were set to dissipate the main alternator power directly into these "dynamic brake" resistance grids, allowing static test of the locomotive.

B. <u>Engine Power Measurement</u>

The goal of "power measurement" is to establish the power produced by the engine, referred to as flywheel or "gross" power, and does not include parasitic power used to support the engine itself, such as fuel pumps, water pumps, etc. The bulk of the engine's flywheel power is converted to electrical power to drive the traction motors and the

remainder is used for accessory loads. There are subtle differences between the locomotive manufacturers in their approach to quantifying flywheel power. The primary differences arise in alternator efficiencies quoted by the locomotive manufacturers, and approaches in accounting for various accessory loads. Gross power represents the sum of "traction power" plus "auxiliary power". For these tests, observed (uncorrected) gross power was used for computing brake-specific emissions.

TABLE 2. LOCOMOTIVES TESTED

	Locomotive Date of	Locomotive Serial		Engine Serial		
Road Number	Manufacture	Number	Engine Model	Number		
GE Model DASH	9-44CW 4,400 hբ	Locomotives				
UP No. 9715	7/94	47861	7FDL16N54	970309R ª		
UP No. 9724	7/94	47870	7FDL16N62	970815R ^b		
UP No. 9733	8/94	47879	7FDL16N7	298951-1		
EMD Model SD70MAC 4,000 hp Locomotives						
BNSF No. 9693	11/95	946565-122	16-710G3B-EC	95J1-1033		
BNSF No. 9754	4/96	956615-38	16-710G3B-EC	96A1-1030		
BNSF No. 9696	12/95	946565-125	16-710G3B-EC	95K1-1004		
Notes: a - GE engine 970309R was remanufactured by GE in March 1997.						

b - GE engine 970815R was remanufactured by GE in August 1997.

Gross power for the GE locomotives was recorded from the onboard computer display. Recording the gross power using the on-board computer is a deviation from the EPA locomotive test procedure for locomotives, which calls for direct measurement of electrical power with an NIST-traceable accuracy of better than two percent. EPA also requires that the specified alternator efficiency for each test point be given along with the basis for determining the efficiency. Due to the fact that the objective of this study was to document emissions using different fuels on the same locomotive, the absolute accuracy of gross power measurement was of secondary concern, and any small inaccuracies in the measured power would be applied uniformly to emission results for a given locomotive.

¹ CFR, Title 40, Part 92, §92.106 "Equipment for loading the engine."

Like the GE locomotives, the on-board computer display was used to record the traction power from the EMD locomotives. Accessory loads from the auxiliary generator, air compressor, traction motor blower, inertial separator blower, radiator cooling fans, and TCC blower were computed based on published EMD load box test procedures.

Power and fuel rates are reported as observed values. Observed gross power was used to report brake-specific exhaust emissions in g/hp-hr. However, corrected brake-specific fuel consumption (BSFC) values were reported by applying published EMD and GE correction factors for ambient air temperature, barometric pressure, fuel heating value, fuel temperature, and fuel specific gravity.

C. <u>Fuel Consumption Measurement</u>

Diesel fuel consumption rate was measured on a mass basis, using a mass flow meter adapted from laboratory use at SwRI. The system was equipped with a heat exchanger to control fuel supply temperature to 90±10°F. Hot return fuel that normally returns to the locomotive's on-board fuel tank was cooled before returning to the fuel measurement reservoir ("day" tank) to assure consistent fuel supply temperature to the engine.

D. Test Fuels

Four fuels were included in this study, and selected properties of the fuels are summarized in Table 3. Sixteen thousand gallons of "CARB" fuel was provided by Equilon (under separate agreement between CARB and Equilon), and stored on site in a rail tank car provided by BNSF. The CARB fuel was a blend of 8,000 gallons of commercially available CARB-approved fuel from the Texaco refinery in Los Angeles, California, plus another 8,000 gallons of commercially-available CARB-approved fuel from the ARCO refinery in South Gate, California. Both fuels were delivered to the SwRI Locomotive Test Center by truck, and the fuels were mixed in a single tank car. The properties of the CARB fuel were considered by ARB to be representative of commercially available on-highway fuel sold in California.

Federal "on-highway" fuel was a commercially available product purchased by Equilon from Sun Coast Resources, Inc. in Houston, Texas. Sixteen thousand gallons of this fuel were stored on site in a second rail tank car provided by BNSF.

"High-sulfur, nonroad" fuel was also provided by Equilon, and was purchased from the Costal Refining and Marketing, Inc. refinery in Corpus Christi, Texas. This too was a commercially available product. Sixteen thousand gallons of this fuel was stored in a third rail tank car, which was provided by UP. This fuel had a relatively high sulfur content of 4,760 ppm (0.476 weight percent).

Locomotive testing began in September 1998 with three fuels (CARB fuel, on-highway fuel, and high-sulfur, nonroad fuel). Two EMD model SD70MAC locomotives were tested with these three fuels. By the time testing of the first GE locomotive was scheduled, the railroads expressed concern over the unusually high sulfur content (4,760 ppm) of the high-sulfur, nonroad fuel (SwRI fuel code EM-2664-F).

The railroad's position was that this sulfur level was not representative of railroad fuel, and that a fuel sulfur level of approximately 3,000 ppm was more appropriate. A fuel sulfur content of 3,000 ppm would be the mid-point of the range EPA specified, 2,000 ppm to 4,000 ppm sulfur content, for certification testing.² In response to the railroad concerns, ARB requested that SwRI blend a fourth test fuel with a target sulfur level of 3,000 ppm.

The approach taken by SwRI was to blend 5,000 gallons of the existing 4,760 ppm sulfur fuel with 3,300 gallons of a blend fuel purchased from Specified Fuels & Chemicals. The blend fuel was selected such that except for sulfur, the remaining fuel properties were similar to the 4,760 ppm sulfur fuel. The fourth test fuel was blended in a fourth tank car that SwRI had available at the test site.

An analysis of the fourth test fuel was performed, and the results are included in Table 3 (SwRI fuel code EM-2708-F), along with the properties of the original three test fuels. The fuel sulfur content of the fourth fuel, the "0.3 percent sulfur nonroad fuel" was 3,190 ppm. Table 3 also shows the specifications for locomotive emissions test fuel given in the Code of Federal Regulations, Title 40, Section 92.113. Although it was not the objective of this program to include a fuel meeting EPA specifications, the 0.3 percent sulfur nonroad fuel met the EPA requirements.

Triplicate emission tests using the fourth fuel were initiated with the first GE locomotive, UP No. 9715, and this fuel was used in addition to the other three fuels. Therefore, a total of twelve tests (triplicate tests on four fuels) were run on UP No. 9715.

SwRI Final Report 08.02062 5

² 40 CFR, §92.113 "Fuel Specifications".

Adding the fourth test fuel added two test days to the schedule for each of the three GE locomotives. Due to budget constraints, ARB dropped unregulated emissions measurement when using the fourth fuel, and when the third EMD locomotive was tested later in the project, only the three original fuels were used, because it was desired to be consistent with the first two EMD locomotives, tested with only the three original fuels.

TABLE 3. PROPERTIES OF DIESEL FUELS USED IN LOCOMOTIVE TESTING

Determinations	ASTM Test Method	CARB Fuel EM-2663-F	On-Highway Fuel EM-2677-F	High Sulfur Nonroad EM-2664-F	0.3% Sulfur Nonroad EM-2708-F	EPA Locomotive Spec. ^a
API Gravity @ 60EF specific gravity density (lb/gal)	D4052	39.1 0.8295 6.92	36.9 0.8403 7.01	33.8 0.8561 7.14	34.1 0.8547 7.13	32 - 37 ns ns
Viscosity @ 40EC (cSt)	D445-83	2.46	2.29	3.19	2.77	2.0 - 3.2
Sulfur (Wt%)	D2622-94	0.005	0.033	0.476	0.319	0.2 - 0.4
Cetane Index	D976	52.0	47.8	48.6	46.5	40 - 48
Cetane Index	D4737	53.1	47.9	47.8	46.6	ns
Cetane Number	D613-84	51.0	48.9	47.0	44.5	40 - 48
Nitrogen Content (ppm)	D4629-96	8.4	114.4	352.1	220.1	ns
Heat of Combustion Gross (BTU/lb) Net (BTU/lb) Gross (BTU/gal) Net (btu/gal)	D240	19,715 18,479 136,400 127,900	19,555 18,358 137,100 128,700	19,457 18,270 138,900 130,400	19,440 18,240 138,600 130,100	ns ns ns ns
Carbon-Hydrogen Ratio % Carbon % Hydrogen Hydrogen/Carbon Ratio	D3178	86.37 13.63 1.880	86.88 13.12 1.799	86.96 13.04 1.788	86.77 13.23 1.818	ns ns ns
SFC Aromatics Total Mass % Total Volume Percent b PNA Mass %	D5186-96	22.39 21.84 1.66	30.08 28.88 7.83	29.50 28.35 6.72	33.11 31.66 8.89	27 min.
Hydrocarbon Type Aromatics (%) Olefins (%) Saturates (%)	D1319-84	22.4 2.0 75.6	32.2 3.0 64.8	34.4 2.6 63.0	39.8 2.5 57.7	ns ns ns
Flash Point (EF)	D93-80	167	143	163	166	130 min.
Distillation	D86-96 % Recovered IBP 10 50 90 EP	Temp. EF 368 413 490 606 659	Temp. EF 332 391 485 598 652	Temp. EF 360 422 536 638 682	Temp. EF 375 426 513 620 672	Temp. EF 340 - 400 400 - 460 470 - 540 560 - 630 610 - 690

Note:

7

a - Diesel fuel for locomotive testing as specified by EPA in 40 CFR 92, §92.113, Table B113-1.

b - Aromatic hydrocarbons expressed in percent volume = 0.916 x (aromatic hydrocarbons expressed in percent weight) + 1.33, per California Code of Regulations, Title 13, §2282 (c)(1).

ns - not specified

Included with the unregulated emissions analysis planned for this program were measurements for trace quantities of metals within the exhaust particulate. Therefore, an ASTM D-5185 metals analysis of the test fuels was performed to quantify trace quantities of metals that may have been present in the test fuels. The metals of interest were provided by ARB, and these were the same metals of interest for selected exhaust PM samples. ASTM D-5185 essentially outlines a procedure that uses an inductively coupled plasma (ICP) technique for lubricating oil metals analysis. However, for this work, the procedure was applied to diesel fuels.

Table 4 shows that the only metal detected in the test fuels was trace quantities of lead, which was present in both the on-highway fuel and the 0.3 percent sulfur nonroad fuel, in levels just above the detection level of 1 ppm. Other values given in Table 4 indicate that levels of these metals were below the detection limit. The detection limits given were established with readily available calibration standards. Although chloride was included for PM analysis, the ICP technique used to analyze the fuel could not be used for chloride.

TABLE 4. METAL CONTENT OF TEST FUELS

		On-Highway	High Sulfur	0.3% Sulfur
	CARB Fuel	Fuel	Nonroad	Nonroad
Element	EM-2663-F	EM-2677-F	EM-2664-F	EM-2708-F
Sb - Antimony	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
As - Arsenic	< 5 ppm	< 5 ppm	< 5 ppm	< 5 ppm
Be - Beryllium	< 2.5 ppm	< 2.5 ppm	< 2.5 ppm	< 5 ppm
Cd - Cadmium	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
Cr - Chromium	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
Co - Cobalt	< 2.5 ppm	< 2.5 ppm	< 2.5 ppm	< 5 ppm
Cu - Copper	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
Pb - Lead	< 1 ppm	1.1 ppm	< 1 ppm	1.0 ppm
Mn - Manganese	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
Hg - Mercury	< 5 ppm	< 5 ppm	< 5 ppm	< 5 ppm
Ni - Nickel	< 1 ppm	< 1 ppm	< 1 ppm	< 1 ppm
Se - Selenium	< 5 ppm	< 5 ppm	< 5 ppm	< 5 ppm
Note: ASTM D-5185				

8

E. Regulated Exhaust Emissions Test Procedures

SwRI used the Federal Test Procedure (FTP) for locomotives as detailed in Title 40 of the U.S. Code of Federal Regulations (CFR), Part 92, Subpart B, to measure the regulated emissions of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NO $_{\rm X}$), particulate matter (PM), and smoke opacity. Deviations from the FTP included using test fuels that did not meet EPA specifications, and using the locomotive's on-board computer display for gross power instead of directly measuring the main alternator voltage and current, as was described earlier in Section II.B of this report.

SwRI ran triplicate FTP tests for emissions on each locomotive for each of the fuels selected. The order of fuels tested was randomized. In accordance with the FTP, emissions of HC, CO, NO_X , and PM were measured for each throttle notch, along with smoke opacity. In addition, switch cycle and line-haul weighted composite emission levels were calculated.

1. Test Modes and Repeat Testing

Following the FTP, SwRI measured steady-state emissions (HC, CO, NO_x, and particulate), smoke opacity, fuel consumption, and power at each throttle notch, starting at idle. Brake-specific emissions were computed for each throttle notch, along with duty-cycle weighted composite emissions.

2. Gaseous Emissions Sampling

The gaseous sample probe was designed using specifications in 40 CFR §86.310-79. Gaseous emissions were sampled directly from within the exhaust stack extension installed on the roof of the locomotive. A heated line was used to transfer the raw exhaust sample to the emission instruments for analysis. Measured gaseous emissions included HC, CO, carbon dioxide (CO_2), oxygen (O_2), and NO_x .

HC concentrations in the raw exhaust were determined using a Rosemount Analytical model 402 heated flame ionization detector (HFID), calibrated on propane. Following diesel emission measurement protocols in the FTP, steady-state NO_{χ} concentration in the raw exhaust was measured with a chemiluminescent instrument. NO_{χ} correction factors for engine intake air temperature and humidity were applied as specified

by EPA in the FTP. Concentrations of CO and CO₂ in the raw exhaust were determined by non-dispersive infrared (NDIR) instruments.

NO_x Correction Factors

The EPA NO_x correction factor given in Title 40 of the Code of Federal Regulations \$92.132(d) is:

$$KNO_X = (K) \times (1 + (0.25 \times (\log K)^2)^{1/2})$$
 (Eq. 1)

 KNO_X is intended to be the total correction applied to the observed NO_X mass emission rate. The "K" term is comprised of two factors, a factor for ambient air humidity correction (K_H), and a factor for ambient air temperature correction (K_T).

$$K = (K_H) \times (K_T)$$
 (Eq. 2)

From an engineering standpoint, the K_H and K_T terms in Equation No. 2 represent the corrections for humidity and temperature that were based on available data at the time the locomotive rule was published in April 1998.

The ambient air temperature correction factor, K_T , was included in the Locomotive Rule to prevent certificate applicants from deliberately running certification tests at ambient temperatures well below 86°F in an effort to achieve lower NO_X levels. The minimum ambient air temperature allowed is 45°F. On days cooler than 86°F, it is expected that roots-blown EMD engines and new locomotives equipped with separate-circuit charge air cooling would have lower observed NO_X levels than locomotives that use jacket water charge-air cooling systems. The latter are less sensitive to the effects of ambient air temperature within the range of interest (45°F to 105°F).

Ideally, the K_T factor would correct the observed NO_X level to a level expected with an ambient air temperature of $86^{\circ}F$. However, for ambient air temperatures at or above $86^{\circ}F$, the Locomotive Rule fixes $K_T = 1.0$, specifying that no temperature correction is allowed. For ambient air temperatures below $86^{\circ}F$, the value of K_T is adjusted in proportion to the difference between the intake manifold air temperature observed during the test and that observed when ambient temperature was actually $86^{\circ}F$, for the same notch position. Unfortunately, EMD and GE have not published data for the intake manifold air temperature for an $86^{\circ}F$ ambient for each throttle notch. In addition, most of the ARB

locomotive tests were run at ambient air temperatures greater than $86^{\circ}F$, so no K_{T} correction is applicable for those tests, per the Locomotive Rule. Therefore, in the absence of available data from the manufacturers, K_{T} was set to 1.0 for all test data reported in the ARB fuel-effects study. If manufacturer's data becomes available at a later date, the affected locomotive test data could be reprocessed to include the K_{T} correction.

Ambient air humidity levels significantly affect NO_X levels from diesel engines. The humidity portion of the NO_X correction factor, K_H , as outlined in §92.132(d), was used in this study.

3. Particulate Emissions Sampling

Particulate emissions were measured at each test point using a "split then dilute" technique, in which a portion of the raw locomotive exhaust was "split" off of the total flow and mixed with filtered air in an 10-inch diameter dilution tunnel. The split sample was transferred to the dilution tunnel through a 2-inch diameter stainless steel tube that was insulated and electrically heated to 375°F. The dilution tunnel was located at ground level, next to the locomotive, as shown in Figure 2.

FIGURE 2. PARTICULATE DILUTION TUNNEL

The dilute exhaust stream in the dilution tunnel was then sampled using probes shown in Figure 3. Particulate was accumulated on 90 mm Pallflex T60A20 fluorocarbon-coated glass fiber filters at a target filter face velocity of 70 cm/s. The filters were mounted in stainless steel filter holders and connected to the dilution tunnel. Sampling time for particulate measurement was typically five minutes. However, this sample time was shortened when observed pressure differential across the filter sets increased beyond a predetermined value of 40 inches H₂O. Particulate filters were preconditioned and weighed before and after test following EPA procedures in the FTP. The particulate mass emission rate was computed using the increase of mass on the filters, the volume of dilute exhaust drawn through the filters, and dilution air and raw exhaust flow parameters.

FIGURE 3. PARTICULATE SAMPLE PROBES LOCATED WITHIN DILUTION TUNNEL

4. Smoke Opacity Test Procedures

Smoke opacity was measured using a modified U.S. Public Health Service (PHS) full-flow opacity meter (smokemeter) mounted above the locomotive exhaust stack. This smokemeter used standard PHS smokemeter optics and electronics, but was modified to a 40-inch diameter to accommodate large exhaust plume diameters. The construction,

calibration, and operation of the smokemeter followed protocols established by EPA for certification testing of locomotive engines as given in the FTP.

Figure 4 shows the smokemeter assembly installed above the exhaust stack extension of a locomotive. The smokemeter was aligned with the long axis of the rectangular exhaust stack. The through-exhaust path length for the single-stack turbocharged locomotives was approximately 37 inches (as determined by the dimensions of the exhaust stack extension). The center of the light beam was positioned 5±1 inches above the outlet of the exhaust stack extension.

FIGURE 4. SWRI SMOKEMETER INSTALLED ON A LOCOMOTIVE

5. Locomotive Test Sequence

Upon delivery of the locomotive to the test site in San Antonio, a self load test was performed to ensure that the locomotive was producing the expected power. The test fuel supply, exhaust stack extension, and smokemeter ring were then installed. A quick test at each of the throttle notches was performed to determine the appropriate instrument ranges to use for each notch.

The test sequence used for locomotive testing is specified in the FTP. Before emission testing was started, the engine was brought to operating temperature. Generally, this involved operating the locomotive at Notch 8 for at least 15 minutes. After the warm-up period, testing began with idle. The FTP calls for a single test point representing dynamic brake (DB) operation. Like the definition of "idle," there may be several options for defining a single DB test point for emission measurements. For this program, tests were performed at the dynamic brake engine operating condition, DB-2.

F. <u>Unregulated Exhaust Emission Test Procedures</u>

Selected unregulated emissions were measured at all throttle notches for selected locomotives and fuels. The ARB requested that the following unregulated emissions be measured:

- Benzene
- 1,3-Butadiene
- Formaldehyde
- Acetaldehyde
- Acrolein
- Polycyclic aromatic hydrocarbons (PAH) (both gas phase and PM phase)
- Volatile Organic Fraction of total particulate (VOF)
- Metal Particulate
- Sulfates
- Soluble organic fraction (SOF) of particulate

Presented below is a brief discussion of the analytical methods used for sampling and analyzing the unregulated emissions.

1. Benzene and 1,3-butadiene - Analyses of benzene in the dilute exhaust was made using a Hewlett-Packard 6890 gas chromatograph (GC), and a flame-ionization detector (FID). The GC was set up at the locomotive test site to facilitate rapid analysis. The analytical setup included a 2 meter pre-column of 0.25 mm I.D. deactivated fused silica, followed by a capillary analytical column (DB-5[®], 30 m x 0.25 mm, 0.25 Fm film thickness). The dilute sample was injected via a 5 mL gas sample loop which was maintained at 120EC. The column oven temperature profile began at -80EC and progressed to 250EC.

A Perkin-Elmer model 3920B GC with a FID was set up at the locomotive test center for analysis of 1,3-butadiene. It is important to analyze dilute exhaust samples quickly as butadiene is a reactive species, and the sample concentration can decrease within hours. This GC employed a nine-foot by 1/8-inch stainless steel column packed with 80/100 Carbopak C® coated with 0.19 percent picric acid. The carrier gas was helium, at a flow rate of 27 mL per minute. The column was maintained at 40°C for the entire analysis.

- 2. Formaldehyde, acetaldehyde and acrolein To collect aldehydes and ketones, samples of the diluted exhaust and background air were passed through traps containing silica impregnated with 2,4-dinitro-phenylhydrazine (DNPH). Any aldehyde or ketone present in the sampled gas reacted quickly with the DNPH to form a stable derivative. These derivatives were subsequently extracted from the trap by elution with ultra-pure acetonitrile. Analysis of the samples was performed using a high performance liquid chromatograph (HPLC) with ultra-violet (UV) detection.
- **3. PAH** Gas-phase polycyclic aromatic hydrocarbons (PAH) were collected using PUF/XAD traps. Particulate-phase PAHs were collected using a second pair of 90mm filters that were taken simultaneously with the first set of 90mm PM filters, used to establish PM mass emissions. Target analytes are given in Table 5. The PAH detection limit was approximately 5 ng PAH/sample, assuming no significant amount of interference was present in sample extract after cleanup.

Table 5 also lists the PAH compounds on EPA's "211b" target list. The "211b" list comes from EPA's gasoline and diesel motor vehicle fuel additives registration regulations, detailed in Title 40 CFR, Part 79.

The particulate-laden filters were spiked with a mixture of surrogate solution which contained the deuterated compounds fluorene-d10 and terphenyl-d14, at a final concentration of 1.0 ng/FI. They were then Soxhlet extracted for 18 hours using a solvent system that contained ethanol (30 percent) and toluene (70 percent). The extracts were blown down and exchanged into hexane. A cleanup procedure was applied which consisted of sulfuric acid wash and gravity chromatography. A cleanup standard of anthracene-d10 at 1.0 ng/FI was added to monitor the cleanup procedure. The column of the chromatograph was packed with silica gel impregnated with sulfuric acid. The PAHs were eluted out of the column with a solvent system that contained 60 percent dichloromethane (DCM) and 40 percent hexane. The cleaned up extracts were then blown down to 100 μ L. A mixture of recovery standards was spiked to the final extracts prior to GC/MS selected ion monitoring analysis. The recovery standards included acenaphthene-d10, pyrene-d10, and benzo(e)pyrene-d12 at a final concentration of 1.0 ng/FI on column.

The PUF/XAD-2 (gas-phase PAH) traps were extracted, cleaned up, and analyzed the same way as the filters, except that the extraction solvent was DCM. In addition to the recovery standards, a mixture of fifteen deuterated internal standards was added at the time of extraction, to result in a final concentration of 1.0 ng/FL on column. Finally, a matrix

of spike samples and duplicates was analyzed in which all target compounds were spiked at a final concentration of 1.0 ng/FL on column.

TABLE 5. PAH TARGET COMPOUND LIST

PAH Compound	CARB Locomotive Study	EPA 211b Target List
Naphthalene	X	
2-Methylnapthalene	X	
Acenapthene	X	
Acenapthylene	X	
Fluorene	X	
Phenanthrene	Х	
Pyrene	Х	
Benzo(a)anthracene	Х	Х
Chrysene	Х	Х
Benzo(b)fluoranthene	Х	Х
Benzo(k)fluoranthene	X	Х
Benzo(e)pyrene	Х	
Benzo(a)pyrene	X	X
Perylene	X	
Indeno(1,2,3-cd)pyrene	Х	Х
Dibenz(a,h)anthracene	Х	Х
Benz(g,h,i)perylene	X	X

4. Volatile Organic Fraction of Total Particulate (VOF) - Direct filter injection gas chromatography (DFI/GC) was used to measure the volatile organic fraction (VOF) of diesel particulate emissions using the same 90mm Pallflex T60A20 filter collection media used for particulate mass determination. The contribution of unburned lubricating oil to VOF was determined by an interpretive procedure based on comparison of simulated distillation boiling point distribution of a fresh lubricating oil sample to that of the volatile organic fraction for the total particulate. Therefore, an external standard of locomotive

engine lubricating oil was used to quantify the lubricating oil contribution to the VOF. A major advantage of the DFI/GC method over other methods is that a solvent extraction procedure, which has inherent handling errors, is not required.

Analysis by DFI/GC used a Perkin Elmer Model 8500 gas chromatograph (GC) equipped with a uniquely designed filter injection system and a flame ionization detector (FID). Folded filters were placed into the injector, which was subsequently inserted into a cool zone of the GC to allow any oxygen in the system to be purged without losing any sample by desorption. When all oxygen had been purged from the system, the injector was pushed into a heated zone of the GC inlet, where the volatile materials were desorbed and deposited onto the cool column. The GC temperature program then separated the volatilized compounds by boiling point. These compounds were then detected with an FID.

- **5. Metal Particulate** 90mm Nucleopore filters were analyzed to determine the weight fraction of metals present in the total PM. This information was then used to compute the mass emission rate of metals in the exhaust. Sample preparation was conducted as follows: each particulate-laden filter was cut in half and placed in a precleaned, Teflon PFA microwave digestion vessel. Ten milliliters of trace metals grade concentrated nitric acid was added to each vessel. The vessel was capped and placed in a CEM MARS5 Microwave Accelerated Reaction System. "Filter XP1500" was the microwave method that was employed. In this method, a power of 1200W was applied to ramp the temperature of the vessel contents to 240EC in 10 minutes; and then it was held at that temperature for an additional 10 minutes. Once the vessels cooled, the samples were transferred to centrifuge tubes and brought up to a final volume of 50 milliliters with deionized water. The digests of the samples were then analyzed for metals using inductively coupled plasma atomic emission spectrometry (ICP-AES) for all elements except mercury, which was run using cold vapor atomic adsorption (CVAA).
- **6. Sulfates** To isolate the specific effect of fuel sulfur content on PM, sulfate analysis was performed. SO₃ in the dilute engine exhaust reacts rapidly with water in the exhaust to form sulfuric acid aerosols. The aerosols grow to a filterable size range and are collected as a particulate on the PM filters, along with sulfate salts.

The sulfate portion of the total particulate mass accumulated on 90 mm Pallflex T60A20 filter media was quantified using ion chromatography. Any sulfuric acid on the filter was converted to ammonium sulfate by exposure to ammonia vapor in a conditioning chamber. The soluble sulfates were then leached from the filter with a measured volume

of 60 percent isopropanol (IPA) and 40 percent water solution. An aliquot of this extract was injected via autosampler into an ion chromatograph. Anions were separated by the analytical column, and passed through a conductivity detector. The retention time on column provided identification of the anion and the intensity of the signal corresponded to the concentration detected.

The range of the method is quite broad. The instrument is capable of detecting sulfate at levels lower than 0.02 Fg/mL and up to approximately 8 Fg/mL. The sensitivity of this method, however, is limited by the background level of sulfate contained in the Pallflex T60A20 filter media, which is on the order of 0.2 Fg/mL. The values measured for the samples must have the filter background value subtracted. Thus, low sulfate levels in the exhaust may be obscured by correcting for background sulfate present in the filter media. The precision (expressed as coefficient of variation) of the method on the 10 micro siemen scale (which is typically used) with nine observations of a 0.6 Fg/mL standard, is 4.3 percent.

Assuming a detection limit of $0.2~\mu g/mL$ in solution, back-calculating for the conditions used for locomotive testing (different power settings), the range of detection limit for this test work is shown in Table 6.

TABLE 6. REPRESENTATIVE DETECTION LIMIT RANGES FOR SULFATE

REPRESENTATIVE DETECTION LIMIT RANGES FOR SULFATE					
mg/hr mg/bhp-hr mg/lb fuel					
37 - 330					

7. Soluble Organic Fraction

The soluble portion of the organic fraction of total particulate (SOF) was determined by extracting a portion of the particulate-laden 90 mm Pallflex T60A20 PM filter, using a micro-soxhlet apparatus in accordance with ARB's "Test Method for Soluble Organic Fraction (SOF) Extraction" dated April 1989. Resulting SOF levels were determined using a filter weight loss method. The only variation from the ARB procedure was that the extraction was performed on a 40 percent "pie slice" of the 90 mm PM filter, while the ARB

procedure calls for using a 47 mm diameter filter, and extracting the whole filter. This variation should not adversely affect the SOF results.

SwRI Final Report 08.02062 21

III. REGULATED EMISSION TEST RESULTS

A. <u>EMD</u> - Table 7 gives average EPA line-haul duty cycle weighted, or composite, emissions of HC, CO, NO_X, and PM for triplicate tests for the three EMD locomotives tested. Individual test summaries for each of the three EMD locomotives are given in Appendices A through C.

TABLE 7. EMD SD70MAC EMISSIONS SUMMARY

Locomotive / Fuel	Average EPA Line-Haul Composite Emissions ^a , g/hp-hr					
	НС	СО	NO _x	PM		
BNSF No. 9693						
CARB fuel	0.33	2.8	10.8	0.43		
On-Highway fuel	0.33	2.6	11.2	0.42		
Nonroad High Sulfur fuel	0.32	2.4	11.6	0.50		
BNSF No. 9754	BNSF No. 9754					
CARB fuel	0.32	2.0	11.6	0.36		
On-Highway fuel	0.30	1.8	12.1	0.35		
Nonroad High Sulfur fuel	0.32	1.9	12.2	0.40		
BNSF No. 9696						
CARB fuel	0.33	1.1	11.3	0.23		
On-Highway fuel	0.34	1.1	11.9	0.26		
Nonroad High Sulfur fuel	0.32	1.1	12.2	0.29		
Notes: a - Average of three tests on each	fuel.					

On a given fuel, all three EMD locomotives had similar composite NO_{χ} and HC levels, but the CO and PM levels were not consistent between locomotives. The CO and PM levels measured for BNSF No. 9696 were similar to levels for earlier tests performed by SwRI for the EPA in 1995 on BN No. 9457, which was also an EMD SD70MAC.³ Results from BNSF No. 9696 show that line-haul composite NO_{χ} and HC emissions are

SwRI Final Report 08.02062 22

³ Fritz, S. G., "Emissions Measurements - Locomotives," SwRI Final Report No. 5374-024, EPA Work Assignments 1-4 and 2-4, Contract No. 68-C2-0144 (August 1995).

consistent with the first two locomotives, but CO and PM levels were much lower, on the order of half the level measured on the first two locomotives. Note that each of the three EMD locomotives tested in this work had new fuel injectors installed prior to testing at SwRI.

Table 8 gives the average percent change in the line-haul composite emissions between test fuels. For the three EMD locomotives, CARB fuel reduced composite NO_{χ} emissions by an average of 4 percent from levels for on-highway fuel, and by an average of 6 percent from levels for high-sulfur, nonroad fuel. SwRI did not perform a formal statistical analysis of the emissions results, because test results were provided to ARB and the AAR for their own statistical analyses.

Table 7 shows that although the average level of composite PM emissions varied considerably between the three EMD locomotives on a given fuel, the PM responses to fuel changes were comparatively consistent. As reported in Table 8, CARB fuel reduced composite PM emissions by an average of 3 percent from levels for on-highway fuel, and by an average of 16 percent from levels for high-sulfur, nonroad fuel. Using on-highway fuel reduced composite PM emissions by 13 percent from levels for high-sulfur, nonroad fuel. The role of fuel sulfur in PM emissions is discussed in Section II.F.6 of this report.

TABLE 8. AVERAGE CHANGE IN REGULATED EMD LOCOMOTIVE EXHAUST EMISSIONS BETWEEN LOCOMOTIVE TEST FUELS

FUEL CHANGE		Percent change Line-Haul Compo	•	
	НС	СО	NO _x	PM
CARB vs. On-Hwy	+1%	+7%	- 4 %	- 3 %
CARB vs High Sulfur ^b	+ 3 %	+8%	- 6 %	- 16 %
On-Hwy vs High Sulfur ^b	+ 1 %	+ 1 %	- 3 %	- 13 %

Notes: a - EPA Line-Haul composite emissions

b - 4,670 ppm sulfur nonroad fuel.

Table 9 summarizes the smoke opacity levels measured for the three EMD locomotives. Summaries of the individual smoke test results for the three EMD locomotives are given in Appendices A through C. Although no formal statistical analysis of the smoke test results was performed by SwRI, inspection of the results given in Table 9 suggests that there were no major differences in smoke opacity between the three fuels for the three EMD locomotives tested.

TABLE 9. EMD SD70MAC SMOKE OPACITY SUMMARY

Locomotive / Fuel	Average Smoke Opacity ^a , percent opacity		
	Maximum Steady State	30-Second Peak	3-Second Peak
BNSF No. 9693			
CARB fuel	11	14	20
On-Highway fuel	11	14	19
Nonroad High Sulfur fuel	12	16	22
BNSF No. 9754			
CARB fuel	19	25	28
On-Highway fuel	16	22	27
Nonroad High Sulfur fuel	13	20	24
BNSF No. 9696			
CARB fuel	11	13	21
On-Highway fuel	11	14	23
Nonroad High Sulfur fuel	12	15	26
Notes: a - Average of three tests on each fuel.			

SwRI Final Report 08.02062 24

B. <u>GE</u> - Table 10 gives average EPA line-haul composite emissions of HC, CO, NO_X , and PM for triplicate tests on each of the four fuels evaluated in the three GE locomotives. Recall that all three GE locomotives were tested with four fuels; the original three fuels, plus a 0.3 percent sulfur nonroad fuel (SwRI fuel code EM-2708-F). Individual test summaries for each of the three GE locomotives are given in Appendices D through F.

TABLE 10. GE DASH9-44CW EMISSIONS SUMMARY

Locomotive / Fuel	Average EPA Line-Haul Composite Emissions ^a , g/hp-hr							
	НС	СО	NO _x	PM				
UP No. 9724								
CARB fuel	0.40	1.4	11.2	0.14				
On-Highway fuel	0.43	1.4	11.7	0.14				
Nonroad High Sulfur fuel	0.40	1.4	12.2	0.23				
0.3% Sulfur Nonroad fuel	0.41	1.4	11.9	0.19				
UP No. 9715								
CARB fuel	0.33	2.9	10.6	0.13				
On-Highway fuel	0.34	2.9	10.8	0.13				
Nonroad High Sulfur fuel	0.32	3.0	11.5	0.21				
0.3% Sulfur Nonroad fuel	0.33	3.0	11.2	0.17				
UP No. 9733								
CARB fuel	0.32	3.3	10.8	0.13				
On-Highway fuel	0.32	3.5	11.1	0.13				
Nonroad High Sulfur fuel	0.30	3.5	11.5	0.20				
0.3% Sulfur Nonroad fuel	0.30	3.5	11.4	0.17				
Notes: a - Average of three tests on each fuel								

Table 11 gives the average percent change in the line-haul composite emissions between test fuels for the three GE locomotives. CARB fuel reduced composite NO_X emissions by an average of 3 percent from levels for on-highway fuel, and by an average of 7 percent from levels for high-sulfur, nonroad fuel. These results are very consistent with the NO_X response observed for the EMD locomotives.

Using the 0.3 percent sulfur nonroad fuel as the basis of comparison, CARB fuel reduced composite NO_x emissions an average of 5 percent from levels for 0.3 percent sulfur, nonroad fuel. On-highway fuel reduced composite NO_x emissions by 2 percent compared to levels from the 0.3 percent sulfur, nonroad fuel. Table 11 also shows that switching from the high-sulfur (0.476 percent sulfur) fuel to the 0.3 percent sulfur fuel reduced the average composite NO_x emissions from the GE locomotives by 2 percent.

Composite PM emission levels for the three GE locomotives on a given fuel had less variation than was observed for the EMD locomotives. Table 11 gives the average percent difference in the weighted emissions between test fuels for the three GE locomotives. Using CARB fuel reduced the average composite PM emissions by an average of 3 percent compared to on-highway fuel, and by an average of 39 percent compared to high-sulfur, nonroad fuel. Using on-highway fuel, average composite PM emissions were reduced by 38 percent compared to high-sulfur, nonroad fuel.

TABLE 11. AVERAGE CHANGE IN REGULATED GE LOCOMOTIVE EXHAUST EMISSIONS BETWEEN LOCOMOTIVE TEST FUELS

FUEL CHANGE	Percent change in Average Line-Haul Composite Emissions a							
	нс	со	NO _x	PM				
CARB vs On-Hwy	- 4 %	- 1 %	- 3 %	- 3 %				
CARB vs High Sulfur ^b	+ 2 %	- 2 %	- 7 %	- 39 %				
On-Hwy vs High Sulfur ⁵	+6%	- 2 %	- 4 %	- 38 %				
CARB vs 0.3% Sulfur °	+ 1 %	- 3 %	- 5 %	- 27 %				
On-Hwy vs 0.3% Sulfur°	+ 4 %	- 2 %	- 2 %	- 25 %				
0.3% Sulfur ^c vs High Sulfur ^b	+ 2 %	0 %	- 2 %	- 17 %				

Notes: a - EPA Line-Haul duty cycle weighted emissions.

b - 4,670 ppm sulfur nonroad fuel, EM-2664-F

c - 0.3% Sulfur fuel = 3,190 ppm sulfur, EM-2708-F

Using the 0.3 percent sulfur nonroad fuel as the basis of comparison, CARB fuel reduced composite PM emissions an average of 27 percent compared to 0.3 percent sulfur, nonroad fuel, and using on-highway fuel reduced composite PM emissions by 25 percent compared to the 0.3 percent sulfur, nonroad fuel. Table 11 also shows that

switching to the 0.3 percent sulfur fuel from the high-sulfur (0.476 percent sulfur) fuel reduced the average PM emissions from the GE locomotives by 17 percent.

Table 12 summarizes the smoke opacity emissions for the three GE locomotives. Summaries of the individual smoke test results for the three GE locomotives are given in Appendices D through F. No statistical analysis of the smoke test results was performed by SwRI, but inspection of the results given in Table 12 suggests that there was no major change in smoke opacity results between the four fuels in the three GE locomotives.

TABLE 12. GE DASH9-44CW SMOKE OPACITY SUMMARY

	Average Smoke Opacity a, percent opacity					
Locomotive / Fuel	Maximum Steady State	30- Second Peak	3-Second Peak			
UP No. 9724						
CARB fuel	12	19	61			
On-Highway fuel	12	18	62			
Nonroad High Sulfur fuel	13	17	55			
0.3% Sulfur Nonroad fuel	11	15	58			
UP No. 9715						
CARB fuel	14	18	68			
On-Highway fuel	9	14	64			
Nonroad High Sulfur fuel	11	11	52			
0.3% Sulfur Nonroad fuel	10	13	54			
UP No. 9733						
CARB fuel	10	26	84			
On-Highway fuel	10	23	79			
Nonroad High Sulfur fuel	9	22	80			
0.3% Sulfur Nonroad fuel	10	23	82			
Notes: a - Average of three tests on each fuel.						

IV. UNREGULATED EMISSION TEST RESULTS

This section of the report presents results of unregulated emission measurements performed on each of the locomotives. Note that unregulated emissions were measured during one of three test runs on each of the three originally planned test fuels. Unregulated emissions were not measured with the 0.3 percent high-sulfur fuel.

A. Benzene and 1,3-Butadiene

Benzene and 1,3-butadiene emissions were measured on the first two of each of the EMD and GE locomotives, and the results are given in Appendix G. Table 13 and Figures 5 and 6 summarize the EPA line-haul duty-cycle weighted (composite) values for benzene and 1,3-butadiene emissions. In general, no specific trend in benzene or 1,3-butadiene emissions appeared as a function of fuel type for either the EMD or the GE locomotives. However, the GE locomotive engines had benzene emission levels roughly twice as high as the EMD locomotive engines, and 1,3-butadiene emission levels about 40 percent higher than the EMD engines.

TABLE 13. BENZENE AND 1,3-BUTADIENE EMISSIONS SUMMARY

		EPA Line-Haul Composite Emissions							
Languagha	Benzene, mg/hp-hr			1,3-Butadiene, mg/hp-hr					
Locomotive	CARB	On-Hwy	High S	CARB	On-Hwy	High S			
EMD SD70MAC Locomotives									
BNSF No. 9693	1.02	1.64	0.76	1.40	1.60	1.60			
BNSF No. 9754	0.48	0.18	0.15	1.10	1.31	1.28			
BNSF No. 9696	**	**	**	**	**	**			
Average EMD	0.75	0.41	0.96	1.25	1.46	1.44			
GE DASH9-44CW Lo	ocomotive	s							
UP No. 9715	1.42	1.76	1.19	2.26	2.59	2.40			
UP No. 9724	2.84	2.08	2.94	1.25	1.58	1.81			
UP No. 9733	**	**	**	**	**	**			
Average GE	2.13	1.92	2.06	1.76	2.09	2.10			

Note: a - 4,760 ppm sulfur fuel, EM-2664-F.

^{** - 1,3-}Butadiene was not measured during testing of BNSF No. 9696 or UP No. 9733.

FIGURE 5. AVERAGE COMPOSITE BENZENE EMISSIONS

FIGURE 6. AVERAGE COMPOSITE 1,3-BUTADIENE EMISSIONS

B. Formaldehyde, Acetaldehyde, Acrolein

Formaldehyde, acetaldehyde, and acrolein emissions were measured on the first two of each of the EMD and GE locomotives, and the results are given in Appendix H. Table 14 and Figures 7 through 9 summarize the EPA line-haul composite values. In general, no trend in formaldehyde, acetaldehyde, or acrolein emissions appeared as a function of fuel type for either the EMD or the GE locomotives.

FIGURE 7. COMPOSITE FORMALDEHYDE EMISSIONS SUMMARY

FIGURE 8. COMPOSITE ACETALDEHYDE EMISSIONS SUMMARY

SwRI Final Report 08.02062

TABLE 14. FORMALDEHYDE, ACETALDEHYDE, AND ACROLEIN EMISSIONS SUMMARY

		EPA Line-Haul Composite Emissions								
Locomotive	Forma	aldehyde, mg	/hp-hr	Aceta	Acetaldehyde, mg/hp-hr			Acrolein, mg/hp-hr		
Locomotive	CARB	On-Hwy	High S	CARB	On-Hwy	High S	CARB	On-Hwy	High S	
EMD SD70MAC Loco	motives	_	_		_	_	-	_	_	
BNSF No. 9693	20.7	20.4	19.3	10.3	8.9	9.1	2.4	1.9	2.9	
BNSF No. 9754	21.9	14.1	27.0	11.2	6.0	11.9	1.4	0.4	0.9	
BNSF No. 9696	**	**	**	**	**	**	**	**	**	
Average EMD	21.3	17.3	23.1	10.7	7.4	10.5	1.9	1.1	1.9	
GE DASH9-44CW Loc	omotives						_			
UP No. 9715	23.8	17.7	16.4	11.0	6.5	6.1	3.3	0.9	0.7	
UP No. 9724	21.3	21.6	22.4	8.1	7.6	8.8	0.9	1.1	1.0	
UP No. 9733	**	**	**	**	**	**	**	**	**	
Average GE	22.6	19.6	19.4	9.5	7.0	7.4	2.1	1.0	0.9	

Note: a - 4,760 ppm sulfur fuel, EM-2664-F.

^{** -}Aldehydes were not measured during testing of BNSF No. 9696 or UP No. 9733.

FIGURE 9. COMPOSITE ACROLEIN EMISSIONS SUMMARY

C. PAH

PAH emissions were measured on the first two of each of the EMD and GE locomotives, during one of the three tests on each of the three original test fuels. No PAH measurements were made while operating on the 0.3 percent sulfur nonroad fuel. Detailed PAH results are given in Appendix I, expressed on a mass emission rate basis (milligrams per hour), for each of the four locomotives, on each of the three fuels, at each throttle notch, for each of the nineteen PAH compounds, in both gas-phase and PM-phase. There is extensive PAH data included in Appendix I, and numerous ways to analyze and present the data. Spreadsheets of the PAH data were provided to ARB for analysis. For summary purposes, the individual throttle notch results were used to compute EPA line-haul composite PAH emission rates, expressed on a brake-specific basis in units of micrograms per horsepower-hour (µg/hp-hr). These results are given in Table 15. Also included in Table 15 is a summation of the total brake-specific PAH emissions for each locomotive on each test fuel, plus a separate summation of the vapor-phase PAH compounds, and the PM-phase PAH compounds. More than one significant figure is used in parts of Table 15 for completeness, but does not imply accuracy beyond one significant figure.

TABLE 15. EPA LINE-HAUL COMPOSITE PAH EMISSIONS

		GE			GE			EMD			EMD	
		JP No. 972			UP No. 971			NSF No. 96		BNSF No. 9754		
	CARB	On-Hwy	High S	CARB	On-Hwy	High S	CARB	On-Hwy	High S	CARB	On-Hwy	High S
	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH	BS PAH
	μg/hp-hr	μg/hp-hr	μg/hp-hr	μg/hp-hr	μg/hp-hr	µg/hp-hr	μg/hp-hr	μg/hp-hr	μg/hp-hr	μg/hp-hr	µg/hp-hr	μg/hp-h
PM Fraction												
NAPHTHALENE	16	16	12	8	5	6	0	0	0	12	3	5
2-METHYLNAPHTHALENE	8	8	5	1	1	0	1	2	3	3	2	2
ACENAPHTHYLENE	0	0	0	0	0	0	1	2	0	0	0	0
ACENAPHTHENE	2	2	1	ō	ō	ō	Ó	0	ō	1	1	ō
FLUORENE	0	0	0	0	0	0	0	0	0	0	0	0
PHENANTHRENE	7	13	7	8	27	9	ō	0	0	4	6	5
ANTHRACENE	1	1	ó	1	2	0	5	10	5	0	0	0
FLUORANTHENE	15	15	15	10	13	13	0	1	0	2	3	3
PYRENE	21	29	16	14	27	10	4	5	4	6	12	7
BENZO(A)ANTHRACENE	3	4	3	1	2	2	8	14	7	1	1	1
CHRYSENE	5	6	7	3	4	7	o 0	1	1	1	2	2
		3		2	2	2	2	2	2		1	1
BENZO(B)FLUORANTHENE	3		3							1		
BENZO(K)FLUORANTHENE	3	3	3	1	1	2	0	1	1	0	0	0
BENZO(E)PYRENE	3	3	3	1	1	2	0	0	0	0	1	1
BENZO(A)PYRENE	2	2	1	1	1	1	0	1	0	0	0	0
PERYLENE	0	0	0	0	0	0	0	0	0	0	0	0
INDENO(123-CD)PYRENE	2	2	2	1	1	1	0	0	0	0	0	0
DIBENZ(AH)ANTHRACENE	0	0	0	0	0	0	0	0	0	0	0	0
BENZO(GHI)PERYLENE	3	3	1	1	1	1	0	0	0	0	1	0
Gas Phase												
NAPHTHALENE	1005	1894	1050	634	1457	982	0	0	0	26	38	0
2-METHYLNAPHTHALENE	572	515	475	200	504	478	0	6	25	226	430	218
ACENAPHTHYLENE	81	210	170	39	66	71	99	298	186	12	15	15
ACENAPHTHENE	4	26	15	1	6	6	0	0	1	1	3	2
FLUORENE	39	122	81	12	37	47	0	0	0	15	32	21
PHENANTHRENE	175	454	302	51	174	180	3	14	14	40	93	56
ANTHRACENE	18	52	28	3	9	9	28	63	55	4	7	5
FLUORANTHENE	20	37	41	6	11	11	2	4	4	3	4	3
PYRENE	21	56	34	6	18	8	2	2	2	4	8	3
BENZO(A)ANTHRACENE	0	0	0	0	0	0	1	4	2	0	0	0
CHRYSENE	0	0	0	0	0	0	Ö	0	0	0	0	0
BENZO(B)FLUORANTHENE		0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
BENZO(K)FLUORANTHENE		0	-							-		
BENZO(E)PYRENE	0		0	0	0	0	0	0	0	0	0	0
BENZO(A)PYRENE	0	0	0	0	0	0	0	0	0	0	0	0
PERYLENE	0	0	0	0	0	0	0	0	0	0	0	0
INDENO(123-CD)PYRENE	0	0	0	0	0	0	0	0	0	0	0	0
DIBENZ(AH)ANTHRACENE	0	0	0	0	0	0	0	0	0	0	0	0
BENZO(GHI)PERYLENE	0	0	0	0	0	0	0	0	0	0	0	0
EPA Line-Haul Weighted Total PAH (μg/hp-hr)	2,026	3,477	2,276	1,009	2,371	1,850	156	433	317	363	662	349
EPA Line-Haul Weighted PM-Phase PAH (μg/hp-hr)	92	111	80	55	89	58	22	41	26	33	32	27
EPA Line-Haul Weighted Vapor-Phase PAH (µg/hp-hr)	1,935	3,365	2,195	954	2,282	1,792	134	392	291	330	630	322

SwRI Final Report 08.02062

Figures 10 and 11 show the total composite PM-phase PAH and gas-phase PAH emissions, respectively.

FIGURE 10. COMPOSITE PM-PHASE PAH EMISSIONS

FIGURE 11. COMPOSITE GAS-PHASE PAH EMISSIONS

Several observations can be made from the PAH results given in Table 15, and in Figures 10 and 11. The total composite PAH emissions for the GE locomotives were roughly 6 times higher than for the EMD locomotives. PM-phase PAH emissions for the GE locomotives were three times higher than for the EMD locomotives, and the gas-phase PAH emissions were six to seven times higher. The higher PAH emissions of the GE engines were somewhat surprising, given that GE particulate levels were roughly half to a third those measured for the EMD locomotives.

From the PAH data, no major fuel effect on composite PAH emissions for the three fuels was apparent, even though the fuels differed in aromatic content. Recall that the CARB fuel was a blend of two commercially available "equivalent" fuels, which had an SFC aromatic level of 22.4 mass percent, compared to 30.1 percent for the on-highway fuel, and 29.5 percent for the high sulfur nonroad fuel (see Table 3).

SwRI Final Report 08.02062

D. Volatile Organic Fraction of total particulate (VOF)

The soluble organic fraction (SOF) analysis (which was also performed, and the results given in Section G) is more commonly used in PM health-effects assessments. The VOF analysis is important, however, when attempting to quantify the various sources that make up the total PM sampled.

Direct filter injection gas chromatography (DFI/GC) was used to measure the VOF of diesel particulate using the same 90mm Pallflex T60A20 filter collection media used for particulate mass determination. The contribution of unburned lubricating oil to VOF was also determined by an interpretive procedure based on simulated distillation boiling point distribution of a fresh lubricating oil sample. An external standard of locomotive engine lubricating oil was used to quantify the lubricating oil contribution to the VOF. Appendix J contains results from the analysis of selected particulate filters for determination of the VOF.

E. Metal Particulate

Metal particulate emissions were measured on two EMD locomotives and two GE locomotives. On one of the triplicate runs on each of the three original test fuels, PM was also sampled using 90mm Nucleopore filter media. These particulate-laden filters were analyzed to determine the weight fraction of metals present in the PM. This information was then used to compute the mass emission rate of metals in the exhaust.

Appendix K gives results from the PM metals analysis. PM metal mass emission rates are expressed in milligrams per hour at each throttle notch. For each element, at each notch, the value reported is either a "ND" for not detected, or the reported mass emission rate. For those reported as ND, there is an accompanying detection level for that element, at that operating condition. The detection limit was based on the detection limit of the ICP-AES instrument and the calibration standards used, and with the mass of PM accumulated on each filter, given the PM sampling conditions. Results reported as "trace" are those which had a elemental concentration above the detection limit, but less than three times the detection limit.

PM metal results in Appendix K show that chromium was the only metal that was measured above detection levels.

SwRI Final Report 08.02062

F. Sulfates

To isolate the specific effect of fuel sulfur content on changes in particulate emissions, sulfate analyses were performed for one of the three runs made on each fuel on each locomotive. Detailed results for individual tests are given in Appendix L, along with the EPA line-haul composite results.

Sulfate collected as particulate is generally composed of sulfuric acid, H₂SO₄, with associated bound water. The hydration state of the sulfuric acid is very sensitive to the relative humidity in the PM filter weighing chamber. Hence, the chamber humidity is controlled to 50 percent relative humidity to comply with the FTP. At 50 percent relative humidity in the weighing chamber, the hydration of the sulfuric acid results in 1.3 grams of water per gram of H₂SO₄. This hydration means that the fraction of the total particulate mass due to the sulfate is 2.3 times the mass of the "dry" sulfate alone, because of the associated water. Therefore, it should be noted that sulfate emissions summarized in Table 16 are reported as "wet" sulfate.

Results given in Table 16, and in Figure 12, show that for CARB fuel, which had a sulfur content of 50 ppm, sulfates contributed roughly 2 percent of the total PM from the three EMD locomotives tested, at an average composite level of 8 mg/hp-hr. The average composite wet sulfate emissions from the three GE locomotives using CARB fuel were also 8 mg/hp-hr, but because the total PM emissions for the GE locomotives were considerably lower than for the EMD locomotives, sulfate emissions contributed an average of 7 percent of the total composite PM emissions for the three GE locomotives.

The on-highway fuel had a fuel sulfur level of 330 ppm, but the sulfate emissions for both the EMD and GE locomotives were only slightly higher than were observed while operating on CARB fuel. For the EMD locomotives, the sulfate contributed 3 percent to the average total composite PM, or 10 mg/hp-hr. For the GE locomotives, the average composite wet sulfate emissions were 8 mg/hp-hr, which is the same as with CARB fuel.

The high-sulfur, nonroad fuel had a sulfur level of 4,760 ppm, and the increase in total PM due to sulfate was evident. For the EMD locomotives, wet sulfate contributed 15 percent to the total composite particulate, or 62 mg/hp-hr. For the GE locomotives, wet sulfate contributed 52 percent to the total composite particulate, or 118 mg/hp-hr.

SwRI Final Report 08.02062

TABLE 16. SULFATE EMISSIONS SUMMARY

	EPA L	EPA Line-Haul Composite "Wet" Sulfate Emissions b								
1	CARB	On-Hwy	High S	CARB	On-Hwy	High S				
Locomotive		mg/hp-hr % of Total PM								
EMD SD70MAC Locomotives										
BNSF No. 9693	9.9	8.6	60	2.4	2.0	11.9				
BNSF No. 9754	7.5	8.4	68	1.9	2.2	15.2				
BNSF No. 9696	5.6	14.1	60	2.4	5.5	19.1				
Average EMD	8	10	62	2	3	15				
GE DASH9-44CW Lo	ocomotive	S								
UP No. 9715	10.1	7.6	108.	8.1	5.9	45.8				
UP No. 9724	9.8	9.6	138.	7.5	7.1	58.6				
UP No. 9733	4.9	5.7	106.	4.5	4.6	52.8				
Average GE	8	8	118	7	6	52				

Note: a - 4,760 ppm sulfur fuel, EM-2664-F.

b - "Wet" sulfate = "dry" sulfate x 2.3

FIGURE 12. SULFATE EMISSIONS SUMMARY

G. Soluble Organic Fraction

Selected PM filters were analyzed to determine the SOF of the total particulate using a micro-soxhlet apparatus, in accordance with ARB's "Test Method for Soluble Organic Fraction (SOF) Extraction" dated April 1989. Resulting SOF levels were determined using the filter weight loss method. Essentially, SOF is any material (independent of boiling point) that is soluble in a 70 percent ethanol, 30 percent toluene mixture at specified test conditions. The only variance from the ARB SOF procedure was that the extraction was performed on a 40 percent "pie slice" of the 90 mm PM filter, instead of extracting a whole 47 mm diameter filter. This variance should not adversely affect the SOF results because the mass of material extracted would be similar.

SOF results are given in Appendix M, and EPA line-haul composite results are summarized in Table 17, and in Figure 13. The composite data show that the SOF of total particulate was very high for the EMD locomotives, at about 75 percent of the total PM. The SOF mass emission rate for the EMD locomotives is about four times higher than for the GE locomotives while operating on CARB fuel and the on-highway fuel, and roughly two times as high when using high-sulfur, nonroad fuel. For the GE locomotives, the average composite SOF was about 43 percent of total PM while operating on CARB fuel and the on-highway fuel, but composite SOF increased to 61 percent when operating on high-sulfur, nonroad fuel.

TABLE 17. SOF EMISSIONS SUMMARY

	ı	EPA Line-Haul Composite SOF Emissions								
1	CARB	On-Hwy	High S	CARB	On-Hwy	High S				
Locomotive		mg/hp-hr		% of Total PM						
EMD SD70MAC Loc	omotives									
BNSF No. 9693	325	333	361	76	78	77				
BNSF No. 9754	248	298	254	72	84	68				
BNSF No. 9696	169	195	238	74	75	77				
Average EMD	247	275	284	74	79	74				
GE DASH9-44CW Lo	ocomotive	S								
UP No. 9715	55	59	113	43	42	56				
UP No. 9724	67	71	143	47	49	65				
UP No. 9733	44	49	125	40	38	61				
Average GE	56	60	127	43	43	61				
Note: a - 4,760 ppm sul	fur fuel, EM-	2664-F.								

FIGURE 13. SOF OF PM EMISSIONS SUMMARY

V. DDC SERIES 60 DIESEL ENGINE TEST RESULTS

In recent years, many diesel fuel-effects studies have been performed using a Detroit Diesel Corporation (DDC) Series 60 heavy-duty diesel engine. This engine has been used to screen candidate CARB diesel fuel formulations since the late 1980's, and its use is permitted in Title 13 of the California Code of Regulations, Section 2282(g)(4)(A) for certifying a diesel fuel formulation for mobile sources in California. The two batches of fuel from California that were blended to make the CARB fuel used in the locomotive fuel effects project were commercially available CARB-approved equivalent diesel fuel formulations that at one time were qualified in the DDC Series 60 engine.

Given the fact that the CARB fuel used in the locomotive study was a blend of two commercially available CARB fuel formulations, rather than a true CARB reference fuel with an aromatic content of less than 10 percent, the question was raised as to how the CARB fuel blend would compare to the other locomotive test fuels when tested in the DDC Series 60 engine. To answer this question, ARB requested that SwRI run selected locomotive test fuels in the Series 60 engine to assess emissions.

ARB selected three of the four locomotive project test fuels for testing in for the Series 60 engine. The three fuels were CARB fuel, on-highway fuel, and the 0.3 percent sulfur nonroad fuel. Selected properties for all four of the locomotive study test fuels are given in Table 3. Only the 0.476 percent sulfur nonroad fuel used in locomotive testing was not used in the Series 60 tests.

The three locomotive fuels were tested using a 1991 model year 12.7 liter DDC Series 60 engine (SN 06RE001123), with a rated power of 370 hp at a speed of 1,800 rpm, and a peak torque of 1,450 lb-ft at a speed of 1,200 rpm. Transient emission tests were conducted according to the EPA Federal Test Procedure (FTP), as specified in the Code of Federal Regulations (CFR), Title 40, Part 86, Subpart N, "Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines: Gaseous and Particulate Exhaust Test Procedures."

The CARB-equivalent diesel fuel qualification protocols require only transient cycle tests, which are also required for EPA certification of heavy-duty on-highway diesel engines. For this work, four hot-start transient tests on each of the three fuels were run. In addition, ARB requested that selected steady-state tests be run, which could be directly compared to the locomotive test data, which were generated from steady-state tests.

Three steady-state modes were used in the Series 60 tests: rated power to simulate Notch 8 locomotive operation; idle for locomotive Idle, and a condition that represented the Notch 5 engine speed on the GE locomotive, which for the DDC engine was 1,700 rpm, and a load of 540 ft-lb. The three steady-state test modes were then duty-cycle weighted using an "AAR 3-mode" weighting factor developed by SwRI for AAR-funded locomotive testing in the early 1990s. The AAR 3-mode duty cycle weighting factors are 25 percent Notch 8, 25 percent Notch 5, and 50 percent Idle. The AAR 3-mode duty cycle, or AAR-composite, has been shown to give results similar to those obtained for the EPA line-haul duty cycle composite.

Presented in Table 18 are the regulated emission results from four hot-start transient tests on the three locomotive test fuels. Individual transient-cycle test data sheets are given in Attachment N. Table 18 also gives the average results of the four tests, and the difference between the three fuels, expressed as percent change. Comparing CARB fuel to the 0.3 percent sulfur nonroad fuel, CARB fuel resulted in 8.3 percent lower NO_x, and 23.8 percent lower PM. These test results agree with the NO_x and PM reductions that ARB attributes to the overall CARB diesel fuel program, which is a 7 percent reduction in NO_x, and a 25 percent reduction in PM. Comparing the CARB fuel to the Federal onhighway fuel, the CARB fuel had 5.2 percent lower NO_x, but the PM reduction was only 3.9 percent.

Table 19 gives results from an analysis of the composition of the particulate collected from the transient cycle tests. For each transient-cycle test, particulate was sampled using a pair of 90mm diameter Pallflex T60A20 fluorocarbon-coated glass-fiber filters. Presented below is a discussion of the PM filter analysis results.

A portion of each filter was analyzed to determine the SOF of the total particulate using a micro-soxhlet apparatus, in accordance with ARB's "Test Method for Soluble Organic Fraction (SOF) Extraction" dated April 1989. Resulting SOF levels were determined using the filter weight loss method. Essentially, SOF is any material (independent of boiling point) that is soluble in a 70 percent ethanol, 30 percent toluene mixture at specified test conditions. The only variance from the ARB SOF procedure was that the extraction was performed on a 40 percent "pie slice" of the 90 mm PM filter, instead of extracting a whole 47 mm diameter filter. This variance should not adversely affect the SOF results, because the mass of material extracted would be similar.

Results given in Table 19 show that the SOF of total particulate was essentially the same for CARB fuel and on-highway fuel. For both fuels, about 28 percent of the total PM

was SOF, with a brake-specific SOF of 0.057 g/hp-hr. When using the 0.3 percent sulfur nonroad fuel, the SOF increased to 38.5 percent of the total PM, with a brake specific SOF level almost twice as high as the other two fuels, at 0.102 g/hp-hr.

TABLE 18. DDC SERIES 60 TRANSIENT FTP TEST RESULTS USING LOCOMOTIVE TEST FUELS

	HC,	CO,	NO _x ,	PM,	bsfc,			
Test Fuel	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	lb/ hp-hr			
CARB fuel								
Hot 1	0.098	2.311	4.286	0.205	0.378			
Hot 2	0.094	2.253	4.455	0.205	0.379			
Hot 3	0.109	2.225	4.350	0.198	0.372			
Hot 4	0.084	2.255	4.373	0.197	0.376			
Average	0.096	2.261	4.366	0.201	0.376			
On-Highway fuel								
Hot 1	0.117	2.356	4.609	0.209	0.368			
Hot 2	0.212	2.365	4.591	0.206	0.373			
Hot 3	0.124	2.481	4.645	0.213	0.376			
Hot 4	0.111	2.411	4.580	0.210	0.375			
Average	0.118	2.403	4.606	0.210	0.373			
0.3 % Sulfur Nonroad fuel								
Hot 1	0.105	2.567	4.756	0.272	0.375			
Hot 2	0.109	2.510	4.678	0.276	0.372			
Hot 3	0.114	2.520	4.838	0.252	0.371			
Hot 4	0.096	2.441	4.778	0.256	0.371			
Average	0.106	2.510	4.763	0.264	0.372			
Percent Change in Average Transient Hot-Start Emissions								
CARB vs. 0.3% S Nonroad	-9.2 %	-9.9 %	-8.3 %	-23.8 %	+1.1 %			
On-Highway vs 0.3% S Nonroad	+11.6 %	-4.2 %	-3.3 %	-20.6 %	+0.2 %			
CARB vs. On-Highway	-18.6 %	-5.9 %	-5.2 %	-3.9 %	+0.9 %			

TABLE 19. DDC SERIES 60 TRANSIENT FTP PM ANALYSIS

VOF, % of Total PM	VO g/hp		Dry Sulfate, mg/hp-hr	"Wet" Sulfate, mg/hp-hr	"Wet" Sulfate, % of Total PM	Est. Carbon Soot, g/hp- hr	Est. Carbon Soot, % of Total PM
19.9 %	0.0)41	1.1	2.6	1.2 %	0.612	78.9 %
19.7 %	0.0)40	0.9	2.1	1.0 %	0.163	79.3 %
13.0 %	0.0)26	0.6	1.4	0.7 %	0.171	86.3 %
19.8 %	0.0	39	0.7	1.5	0.8 %	0.156	79.4 %
18.1 %	0.0	36	0.8	1.9	0.9 %	0.163	81.0 %
19.7 %	0.0)41	3.2	7.4	3.5 %	0.160	76.8 %
18.2 %	0.0)37	3.2	7.4	3.6 %	0.161	78.3 %
18.6 %	0.0)40	2.7	6.2	2.9 %	0.167	78.5 %
19.7 %	0.0)41	3.1	7.1	3.4 %	0.162	76.9 %
19.0 %	0.0)40	3.0	7.0	3.3 %	0.163	77.6 %
13.2 %	0.0)36	30.7	70.5	25.9 %	0.166	60.9 %
13.2 %	0.0)37	31.5	72.5	26.3 %	0.167	60.5 %
14.1 %	0.0)35	25.5	58.6	23.2 %	0.158	62.7 %
13.9 %	0.0)36	26.7	61.5	24.0 %	0.159	62.1 %
13.6 %	0.0)36	28.6	65.8	24.9 %	0.162	61.5 %
33 %	2 '	%	-97 %	-97 %	-96 %	0 %	32 %
40 %	11	%	-89 %	-89 %	-87 %	0 %	26 %
-5 %	-9	%	-73 %	-73 %	-72 %	0 %	4 %
	40 %	40 % 11	40 % 11 %	40 % 11 % -89 %	40 % 11 % -89 % -89 %	40 % 11 % -89 % -89 % -87 %	40 % 11 % -89 % -89 % -87 % 0 %

b - carbon soot estimated by subtracting VOF and wet sulfate from the total PM.

Another portion of each particulate-laden filter was analyzed to determine the VOF of total PM. The analytical technique used to determine the VOF is known as Direct Filter Injection Gas Chromatography (DFI/GC). One significant advantage to the DFI/GC method over other methods (e.g., SOF) is that no solvent extraction procedure is required to obtain a sample for subsequent analyses. DFI/GC is commonly used in diesel engine development because it provides a qualitative assessment of the relative contributions of fuel and unburned lubricating oil to the VOF. The DFI/GC procedure is described in Section II.F of this report.

DFI/GC analysis was used to measure the VOF of the transient test cycle particulate emissions using a portion of the same filter collection media used for SOF determination. Table 19 summarizes the VOF results from the transient tests performed using the three locomotive fuels. As a percentage of total PM, the VOF values for the CARB and onhighway fuels were very similar, at 18 to 19 percent VOF. The average percentage of VOF for the 0.3 percent sulfur, nonroad fuel was 14 percent. The brake-specific VOF for all three fuels was very similar, ranging from about 0.036 to 0.040 g/hp-hr.

The VOF data for the 0.3 percent sulfur nonroad fuel was notably different from the SOF data. Recall that the average SOF level using the 0.3 percent sulfur nonroad fuel was roughly twice as high as for the other two fuels, 0.057 verses 0.102 g/hp-hr. The 0.102 g/hp-hr SOF level for the 0.3 percent sulfur nonroad fuel is nearly three times higher than the average VOF result of 0.036 g/hp-hr. This difference suggests that the sulfate and other sulfur-containing compounds, and associated water, may have been physically removed from the filter during the SOF extraction process, and inadvertently included as SOF. This observation raises concern over the possibility of double-counting sulfate compounds in PM filter analysis, where sulfur compounds are counted once as sulfate, and potentially again as part of the SOF. This double-counting could lead to erroneously low estimates of the carbon soot fraction of PM. These errors would be proportional to the sulfur content of the fuel, with higher sulfur fuels having the largest potential for error.

To isolate the specific effect of fuel sulfur content on change in particulate emissions, sulfate analyses were performed. Sulfate emissions from the transient test cycles run on the DDC Series 60 engine are summarized in Table 19. Sulfate is reported as "wet" sulfate, because sulfate particulate is generally composed of sulfuric acid, H_2SO_4 , with associated bound water. At 50 percent relative humidity used in the weighing chamber, the hydration of the sulfuric acid results in 1.3 grams of water per gram of H_2SO_4 . This hydration means that the fraction of the total particulate mass due to the sulfate is 2.3 times the mass of the "dry" sulfate alone, because of the associated water. Results given

in Table 19 show that for CARB fuel, which had a sulfur content of 50 ppm, sulfates contributed only 0.9 percent of the total PM, or 1.9 mg/hp-hr. The on-highway fuel had a fuel sulfur level of 330 ppm, and the sulfate contributed an average of 3.3 percent of the total PM, or 7.0 mg/hp-hr. The nonroad fuel had a sulfur level of 3,190 ppm, and sulfate contributed an average 24.9 percent of the total particulate, or 65.8 mg/hp-hr.

Table 19 also gives an estimate of the amount of carbon soot in the PM. Carbon soot was estimated by subtracting the VOF and the "wet" sulfate portions from the total PM. The remainder was considered to be carbon soot. Inspection of the data in Table 19 shows that the estimated mass of carbon soot in total PM is essentially the same for all three fuels. Recall that the VOF was also essentially the same for all three fuels, leaving variation in sulfates as the principal cause for changes in PM emissions among the three fuels tested.

Steady-state test results are given in Table 20 in the form of 3-mode AAR-composite values. Detailed test data for the individual steady-state tests on the DDC Series 60 engine are given in Appendix N. The original test plan called for duplicate 3-mode tests using each fuel. However, due to variability in NO_X and PM results during tests with CARB fuel, three additional tests were run using CARB fuel. All the test results are included in Table 20.

Table 20 also gives the average AAR-composite results, and the difference between emissions for the three fuels, expressed as percent change. Comparing CARB fuel to the 0.3 percent sulfur nonroad fuel, CARB fuel resulted in 5.1 percent lower NO_{χ} , and 37.3 percent lower PM.

Presented in Table 21 is a summary of both transient and steady-state emission results from the DDC Series 60 engine, along with the average change in emissions observed for the three GE locomotives and the three EMD locomotive engines. Note that no tests were run on the EMD locomotives using the 0.3 percent sulfur nonroad fuel, but data for the EMD engines operating on the 0.476 percent sulfur fuel is included for comparison purposes

The data in Table 21 show that during steady-state operation, the NO_X response of the DDC engine was very similar to that observed for both the GE and EMD locomotives. However, during transient operation, the NO_X response of the DDC engine was stronger than observed during steady-state tests.

TABLE 20. DDC SERIES 60 3-MODE AAR-COMPOSITE STEADY-STATE TEST RESULTS USING LOCOMOTIVE TEST FUELS

CARB fuel Run 1 Run 2 Run 3 Run 4 Run 5 Average On-Highway fuel Run 1 Run 2 Average	0.040 0.043 0.035 0.033 0.038	0.482 0.497 0.567 0.519 0.525 0.518	8.236 8.005 8.396 8.059 8.059 8.158	0.091 0.072 0.082 0.069 0.072	0.331 0.326 0.339 0.327
Run 2 Run 3 Run 4 Run 5 Average On-Highway fuel Run 1 Run 2	0.043 0.035 0.033 0.038	0.497 0.567 0.519 0.525	8.005 8.396 8.059 8.059	0.072 0.082 0.069	0.326 0.339 0.327
Run 3 Run 4 Run 5 Average On-Highway fuel Run 1 Run 2	0.035 0.033 0.038	0.567 0.519 0.525	8.396 8.059 8.059	0.082 0.069	0.339 0.327
Run 4 Run 5 Average On-Highway fuel Run 1 Run 2	0.033 0.038	0.519 0.525	8.059 8.059	0.069	0.327
Run 5 Average On-Highway fuel Run 1 Run 2	0.038	0.525	8.059		
Average On-Highway fuel Run 1 Run 2				0.072	
On-Highway fuel Run 1 Run 2	0.038	0.518	9 159		0.330
Run 1 Run 2			0.100	0.077	0.331
Run 2					-
	0.058	0.547	8.389	0.084	0.330
Average	0.061	0.567	8.397	0.091	0.329
	0.059	0.557	8.393	0.087	0.329
0.3 % Sulfur Nonroad fuel					
Run 1	0.026	0.597	8.464	0.131	0.322
Run 2	0.054	0.561	8.729	0.116	0.327
Average	0.040	0.579	8.596	0.123	0.325
Percent Change in Average 3-Mode A	AR-Comp	osite Steady	-State Emiss	sions	
CARB vs. 0.3% S Nonroad	-6.3 %	-10.5 %	-5.1 %	-37.3 %	+1.8 %
On-Highway vs 0.3% S Nonroad +	- 47.0 %	-3.8 %	-2.4 %	-29.2 %	+1.4 %
CARB vs. On-Highway -	-36.3 %	-7.0 %	-2.8 %	-11.4 %	+0.4 %

TABLE 21. COMPARISON OF FUEL EFFECTS ON LOCOMOTIVES AND A DDC SERIES 60 ENGINE

	HC,	CO,	NO _x ,	PM,
Test Cycle / Engine	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
CARB vs. 0.3% S Nonroad				
DDC Series 60 - Transient	-9.6 %	-9.9 %	-8.3 %	-23.8 %
DDC Series 60 - AAR 3-Mode SS	-6.3 %	-10.5 %	-5.1 %	-37.3 %
GE DASH9-44CW ^a	+0.6 %	-2.7 %	-5.4 %	-26.7 %
EMD SD70MAC b,c	+2.6 %	+8.1 %	-6.0 %	-16.0 %
On-Highway vs 0.3% S Nonroad				
DDC Series 60 - Transient	+11.6 %	-4.2 %	-3.3 %	-20.6 %
DDC Series 60 - AAR 3-Mode SS	+47.0 %	-3.8 %	-2.4 %	-29.2 %
GE DASH9-44CW ^a	+4.4 %	-1.7 %	-2.5 %	-24.7 %
EMD SD70MAC b,c	+1.3 %	+1.3 %	-2.5 %	-13.2 %
CARB vs. On-Highway				
DDC Series 60 - Transient	-18.6 %	-5.9 %	-5.2 %	-3.9 %
DDC Series 60 - AAR 3-Mode SS	-36.3 %	-7.0 %	-2.8 %	-11.4 %
GE DASH9-44CW ^a	-3.6 %	-1.0 %	-3.0 %	-2.7 %
EMD SD70MAC b	+1.4 %	+6.9 %	-3.5 %	-3.2 %

Notes: a - Average of the three GE locomotives tested, using the EPA line-haul duty cycle.

Transient PM emission response for the DDC engine was generally similar to that observed for the GE locomotive. The fuel effect on PM emissions for the two-stroke EMD locomotives was roughly half that observed on GE locomotives. This difference is due to the relatively high PM emission level of the EMD locomotives, compared to that of the GE locomotives and the DDC Series 60 engine. A significant portion of the EMD PM is VOF attributable to lubricating oil consumption, and as such, a large portion of the PM is unaffected by fuel type. Therefore, the observed change in PM emissions as a function of fuel type is smaller.

b - Average of the three EMD locomotives tested, using the EPA line-haul duty cycle.

c - The EMD locomotives were not tested with the 0.3 percent sulfur fuel. Data shown

is for tests run using the 0.476 percent sulfur nonroad fuel.

VI. SUMMARY

This report documents results from test work intended to assess changes in locomotive exhaust emissions with changes in the type of diesel fuel used. In this project, three commercially available fuels were tested in a total of six 4,000 to 4,400 hp line-haul locomotives; three manufactured by the Electro-Motive Division of General Motors Corporation (EMD), and three manufactured by the Transportation Systems Division of the General Electric Company (GE). The commercially available fuels included a CARB fuel, a Federal on-highway fuel, and high-sulfur, nonroad fuel. Due to the fact that the sulfur level of the "high- sulfur" fuel was higher than nonroad diesel fuel typically purchased by the railroads, a fourth fuel was also used in the three GE locomotives, which was a nonroad fuel with a sulfur level of 3,190 ppm (0.32 percent). In this report, this fourth fuel is referred to as the "0.3 percent sulfur" fuel, and is considered to be more representative of high sulfur nonroad diesel fuels used by the railroads. Test results from the program were provided to ARB and the AAR for detailed analysis.

Focusing on the major changes in EPA line-haul composite emissions that occurred with the different fuels, Table 22 summarizes the percent changes in regulated exhaust emissions that occurred when switching fuels. Compared to the high-sulfur, nonroad diesel fuel, average composite NO_χ emissions were 6-7 percent lower with CARB fuel, which corresponds to about 0.8 g/hp-hr. This level of NO_χ reduction is similar to the reduction observed for on-highway diesel engines.

Figure 14 shows the effect of test fuel sulfur content on the composite PM emissions from the two models of locomotives tested. The PM reduction with CARB fuel was largely attributable to the reduced sulfur content of the fuel, and on a g/hp-hr basis, the response to PM was essentially the same for each locomotive model. Sulfate analysis performed on the PM samples quantified the contribution of sulfate to total PM emissions.

Changes to composite HC and CO emissions with CARB fuel and the high-sulfur nonroad fuel were mixed, and did not show any strong trends. There was little change in smoke, as well. However, it is anticipated that ARB and AAR statistical analyses of the data will determine what changes in emissions are statistically significant.

Detailed test results for selected unregulated emissions, including benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, gas-phase and PM-phase PAH compounds, the volatile organic fraction of total particulate, PM metals, sulfates, and the

soluble organic fraction, are included in this report. Notable changes in sulfate and SOF were observed between the test fuels, with the CARB fuel demonstrating considerable reductions in both sulfate and SOF. No statistical analyses of data was performed as part of this program.

TABLE 22. AVERAGE CHANGE IN REGULATED LOCOMOTIVE EXHAUST EMISSIONS BETWEEN TEST FUELS

FUEL CHANGE	Percent change in Average Line-Haul Composite Emissions ^a								
	НС	СО	NO _x	PM					
EMD SD70MAC									
CARB vs. On-Hwy	+ 1 %	+7%	- 4 %	- 3 %					
CARB vs High Sulfur ^b	+ 3 %	+8%	- 6 %	- 16 %					
On-Hwy vs High Sulfur ^b	+ 1 %	+ 1 %	- 3 %	- 13 %					
GE DASH9-44CW									
CARB vs On-Hwy	- 4 %	- 1 %	- 3 %	- 3 %					
CARB vs High Sulfur ^b	+ 2 %	- 2 %	- 7 %	- 39 %					
On-Hwy vs High Sulfur ^b	+6%	- 2 %	- 4 %	- 38 %					
CARB vs 0.3% Sulfur °	+ 1 %	- 3 %	- 5 %	- 27 %					
On-Hwy vs 0.3% Sulfur °	+ 4 %	- 2 %	- 2 %	- 25 %					

Notes: a - EPA Line-Haul duty cycle weighted emissions.

b - 4,670 ppm sulfur nonroad fuel, EM-2664-F

c - 0.3% Sulfur fuel = 3,190 ppm sulfur, EM-2708-F

When the locomotive test fuels were evaluated in a DDC Series 60 diesel engine, which was the engine used to qualify equivalent CARB fuel formulations, results showed that during steady-state operation, the NO_X response of the DDC engine to the locomotive test fuels was very similar to that observed on the GE and EMD locomotives. During transient operation, the NO_X response of the DDC engine was consistently stronger than observed during steady-state tests. PM response of the DDC engine as a function of fuel type was generally similar to that observed for the GE locomotive.

FIGURE 13. EFFECT OF TEST FUEL SULFUR CONTENT ON PM EMISSIONS

Appendix O to this report documents results from exhaust particulate size distribution measurements performed on one of the three GE locomotives tested, UP No. 9724. For the particulate size determination work reported in Appendix O, two fuels were compared; CARB diesel and a nonroad diesel fuel with a fuel sulfur level of 0.3 percent (3,190 ppm). Tests were run at only two operating conditions: Idle and Notch 8 (rated power). Particle size distribution was measured using a Model 110 micro-orifice uniform deposit impactor (MOUDI). Additional analysis of the size-segregated particulate included determination of the volatile organic fraction (VOF), elemental analysis, and anion and cation analyses.

LIST OF APPENDICES

Α	BNSF	No. 9693 Test Data
	A-1	BNSF No. 9693 Test Summary
	A-2	BNSF No. 9693 Test Results Using CARB Diesel Fuel
	A-3	BNSF No. 9693 Test Results Using On-Highway Diesel Fuel
	A-4	
	A-5	BNSF No. 9693 Smoke Test Summary
В	BNSF	No. 9754 Test Data
	B-1	BNSF No. 9754 Test Summary
	B-2	BNSF No. 9754 Test Results Using CARB Diesel Fuel
	B-3	BNSF No. 9754 Test Results Using On-Highway Diesel Fuel
	B-4	BNSF No. 9754 Test Results Using High-Sulfur Diesel Fuel
	B-5	BNSF No. 9754 Smoke Test Summary
C	BNSF	No. 9696 Test Data
	C-1	BNSF No. 9696 Test Summary
	C-2	BNSF No. 9696 Test Results Using CARB Diesel Fuel
	C-3	BNSF No. 9696 Test Results Using On-Highway Diesel Fuel
	C-4	BNSF No. 9696 Test Results Using High-Sulfur Diesel Fuel
	C-5	BNSF No. 9696 Smoke Test Summary
D	UP N	o. 9724 Test Data
	D-1	UP No. 9724 Test Summary
	D-2	UP No. 9724 Test Results Using CARB Diesel Fuel
	D-3	UP No. 9724 Test Results Using On-Highway Diesel Fuel
	D-4	UP No. 9724 Test Results Using High-Sulfur Diesel Fuel
	D-5	UP No. 9724 Test Results Using 0.3% Sulfur Diesel Fuel
	D-6	UP No. 9724 Smoke Test Summary
E	UP N	o. 9715 Test Data
	E-1	3
	E-2	
	E-3	UP No. 9715 Test Results Using On-Highway Diesel Fuel
	E-4	UP No. 9715 Test Results Using High-Sulfur Diesel Fuel
	E-5	UP No. 9715 Test Results Using 0.3% Sulfur Diesel Fuel
	E-6	UP No. 9715 Smoke Test Summary
F	UP N	o. 9733 Test Data
	F-1	UP No. 9733 Test Summary
	F-2	UP No. 9733 Test Results Using CARB Diesel Fuel
	F-3	UP No. 9733 Test Results Using On-Highway Diesel Fuel
	F-4	UP No. 9733 Test Results Using High-Sulfur Diesel Fuel
	F-5	UP No. 9733 Test Results Using 0.3% Sulfur Diesel Fuel
	F-6	UP No. 9733 Smoke Test Summary

- G Benzene and 1,3 Butadiene Data
- H Formaldehyde, Acetaldehyde, and Acrolein Data
 - H-1 Formaldehyde
 - H-2 Acetaldehyde
 - H-3 Acrolein
- I PAH Data
 - I-1 BNSF No. 9693 PAH Mass Emissions Rate Using CARB diesel
 - I-2 BNSF No. 9693 PAH Mass Emissions Rate Using On-Highway diesel
 - I-3 BNSF No. 9693 PAH Mass Emissions Rate Using High-Sulfur, Nonroad diesel
 - I-4 BNSF No. 9754 PAH Mass Emissions Rate Using CARB diesel
 - I-5 BNSF No. 9754 PAH Mass Emissions Rate Using On-Highway diesel
 - I-6 BNSF No. 9754 PAH Mass Emissions Rate Using High-Sulfur, Nonroad diesel
 - I-7 UP No. 9715 PAH Mass Emissions Rate Using CARB diesel
 - I-8 UP No. 9715 PAH Mass Emissions Rate Using On-Highway diesel
 - I-9 UP No. 9715 PAH Mass Emissions Rate Using High-Sulfur, Nonroad diesel
 - I-10 UP No. 9724 PAH Mass Emissions Rate Using CARB diesel
 - I-11 UP No. 9724 PAH Mass Emissions Rate Using On-Highway diesel
 - I-12 UP No. 9724 PAH Mass Emissions Rate Using High-Sulfur, Nonroad diesel
- J Volatile Organic Fraction (VOF) of Particulate Data
- K Metal Particulate Data
 - K-1 BNSF No. 9693 Metal Particulate Mass Emissions Rate
 - K-2 BNSF No. 9654 Metal Particulate Mass Emissions Rate
 - K-3 UP No. 9715 Metal Particulate Mass Emissions Rate
 - K-4 UP No. 9724 Metal Particulate Mass Emissions Rate
- Sulfate Data
- M SOF of Particulate Data
- N DDC Series 60 Test Data
 - N-1 DDC Series 60 Transient Test Data
 - N-2 DDC Series 60 Steady-State Test Data
- O Particulate Size Characterization

APPENDIX A-1

BNSF No. 9693 Test Summary

EPA Line-Haul Duty Cycle Weighting Factors								EPA Switch Cycle Weighting Factors								
	•	,		EPA					•			EPA				
	obs bsfc	HC	CO	NOx	KH-NOx	PM	BNSF 9693 SUMMARY		obs bsfc	HC	CO	NOx	KH-NOx	PM		
	lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	EMD SD70MAC		lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr		
Carb Die	sel (EM-266	3-F)						Carb Die	esel (EM-266	3-F)						
							Updated 06-29-99 sgf									
	0.353	0.338	2.586	11.119	10.958	0.425			0.410	0.565	2.209	11.697	11.499	0.323		
	0.355	0.342	3.027	10.981	10.797	0.449			0.414	0.499	2.397	11.814	11.597	0.321		
	0.354	0.321	2.795	10.983	10.739	0.414			0.413	0.531	2.287	11.690	11.513	0.346		
Avg	0.354	0.334	2.803	11.028	10.831	0.430		Avg	0.412	0.531	2.298	11.734	11.536	0.330		
cov	0.3%	3.3%	7.9%	0.7%	1.0%	4.2%		COV	0.4%	6.2%	4.1%	0.6%	0.5%	4.2%		
On-High	way Diesel (EM-2677-F	-)					On-High	way Diesel (EM-2677-F	-)					
	0.354	0.314	2.509	11.452	11.178	0.427			0.415	0.550	2.249	12.043	11.745	0.303		
	0.355	0.319	2.644	11.471	11.340	0.422			0.413	0.492	2.242	12.129	11.975	0.321		
	0.357	0.341	2.673	11.128	10.915	0.426			0.418	0.513	2.315	11.674	11.436	0.349		
Avg	0.355	0.325	2.608	11.351	11.144	0.425		Avg	0.416	0.518	2.269	11.949	11.719	0.324		
cov	0.4%	4.3%	3.4%	1.7%	1.9%	0.5%		cov	0.6%	5.7%	1.8%	2.0%	2.3%	7.2%		
Nonroad	High Sulfur	Diesel (EM	1-2664-F)					Nonroad	d High Sulfur	Diesel (EM	1-2664-F)					
	_								_							
	0.357	0.236	2.376	11.526	11.300	0.469			0.420	0.405	2.107	12.216	11.961	0.356		
	0.356	0.346	2.402	11.905	11.703	0.521			0.419	0.540	2.160	12.478	12.263	0.368		
	0.357	0.364	2.334	11.913	11.697	0.504			0.419	0.530	2.108	12.577	12.347	0.382		
Avg	0.356	0.315	2.370	11.781	11.567	0.498		Avg	0.419	0.492	2.125	12.424	12.190	0.369		
cov	0.2%	22.0%	1.4%	1.9%	2.0%	5.4%		cov	0.2%	15.3%	1.4%	1.5%	1.7%	3.7%		
	-0.7%	6%	18%	-6%	-6%	-14%	carb vs HS		-1.7%	8%	8%	-6%	-5%	-11%	carb vs HS	
	-0.3%	3%	10%	-4%	-4%	-15%	on-hwy vs HS		-0.9%	5%	7%	-4%	-4%	-12%	on-hwy vs HS	
	-0.4%	3%	7%	-3%	-3%	1%	carb vs on-hwy		-0.8%	3%	1%	-2%	-2%	2%	carb vs on-hwy	

Note: EPA NOx = full NOx correction factor

Note: KH NOx = only ambient air humidity NOx correction factor applied

APPENDIX A-2

BNSF No. 9693 Test Results Using CARB Diesel Fuel

BNSF #9693 Test Date 09-17-98 CARB Diesel Fuel EM-2663-F Run #1/3

SwRI Proje	ect 08-2062-	-001								Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	46.5	122	284	1,086	1,064	33	DB-2	12.5%	2.4	5.8	15.3	35.5	135.8	133.0	4.1
Low Idle	14	24.0	109	137	687	674	15	Low Idle	19.0%	2.6	4.6	20.7	26.0	130.5	128.0	2.9
Idle	19	46.5	122	284	1,086	1,064	33	Idle	19.0%	3.7	8.8	23.2	54.0	206.3	202.2	6.3
N1	205	88.8	193	312	2,109	2,069	54	N1	6.5%	13.3	5.8	12.5	20.3	137.1	134.5	3.5
N2	438	169.2	250	415	4,377	4,300	106	N2	6.5%	28.4	11.0	16.3	27.0	284.5	279.5	6.9
N3	980	352.8	370	549	9,850	9,691	243	N3	5.2%	51.0	18.3	19.2	28.5	512.2	503.9	12.6
N4	1,519	535.2	432	1,518	16,850	16,574	387	N4	4.4%	66.8	23.5	19.0	66.8	741.4	729.3	17.0
N5	2,005	702.0	549	4,437	21,813	21,428	538	N5	3.8%	76.2	26.7	20.9	168.6	828.9	814.3	20.4
N6	2,881	994.0	664	14,924	28,877	28,424	968	N6	3.9%	112.4	38.8	25.9	582.0	1126.2	1108.5	37.8
N7	3,652	1,215.0	903	11,356	39,624	39,023	1,023	N7	3.0%	109.6	36.5	27.1	340.7	1188.7	1170.7	30.7
N8	4,208	1,390.8	1,158	9,998	46,128	45,529	2,135	N8	16.2%	681.6	225.3	187.6	1619.7	7472.7	7375.7	345.9
							sum =	TOTAL	100.0%	1148.0	405.1	387.6	2969.1	12764.4	12579.6	488.1
							EPA line-haul dut	ty cycle weighted bi	rake-specific em	issions	0.353	0.34	2.6	11.1	11.0	0.43
							EPA line-haul dut	ty cycle maximum T	Γier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	,						
Individual	Notch brake	-specific em	issions					E	PA Switch Cycle	•		Weighted R	esults			
Individual	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	РМ	E	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC						,		w-bsfc	w-HC	w-CO			
Individual Notch DB-2	Notch brake			CO (g/hp-hr) 14.72	Corr. NOx (g/hp-hr) 56.27	KH-NOx (g/hp-hr) 55.15	PM (g/hp-hr) 1.71	Notch DB-2	EPA			Ü		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.409	HC (g/hp-hr) 6.32	(g/hp-hr) 14.72	(g/hp-hr) 56.27	(g/hp-hr) 55.15	(g/hp-hr) 1.71	Notch DB-2	EPA WF 0.0%	w-BHP	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.409 1.778	HC (g/hp-hr) 6.32 8.07	(g/hp-hr) 14.72 10.15	(g/hp-hr) 56.27 50.89	(g/hp-hr) 55.15 49.89	(g/hp-hr) 1.71 1.11	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.2	w-HC w-(g/hr) 0.0 32.6	w-CO w-(g/hr) 0.0 41.0	w-(g/hr) 0.0 205.4	w-(g/hr) 0.0 201.4	w-(g/hr) 0.0 4.5
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409	HC (g/hp-hr) 6.32 8.07 6.32	(g/hp-hr) 14.72 10.15 14.72	(g/hp-hr) 56.27 50.89 56.27	(g/hp-hr) 55.15 49.89 55.15	(g/hp-hr) 1.71 1.11 1.71	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	w-BHP 0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9	w-HC w-(g/hr) 0.0 32.6 36.5	w-CO w-(g/hr) 0.0 41.0 84.9	w-(g/hr) 0.0 205.4 324.7	w-(g/hr) 0.0 201.4 318.2	w-(g/hr) 0.0 4.5 9.9
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434	HC (g/hp-hr) 6.32 8.07 6.32 0.94	(g/hp-hr) 14.72 10.15 14.72 1.52	(g/hp-hr) 56.27 50.89 56.27 10.31	(g/hp-hr) 55.15 49.89 55.15 10.11	(g/hp-hr) 1.71 1.11 1.71 0.26	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	w-BHP 0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0	w-HC w-(g/hr) 0.0 32.6 36.5 23.9	w-CO w-(g/hr) 0.0 41.0 84.9 38.7	w-(g/hr) 0.0 205.4 324.7 261.5	w-(g/hr) 0.0 201.4 318.2 256.6	w-(g/hr) 0.0 4.5 9.9 6.7
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	w-BHP 0.0 4.0 5.8 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0	w-(g/hr) 0.0 205.4 324.7 261.5 538.4	w-(g/hr) 0.0 201.4 318.2 256.6 528.9	w-(g/hr) 0.0 4.5 9.9 6.7 13.0
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360 0.352	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38 0.28	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56 1.00	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05 11.09	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89 10.91	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25 0.25	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5 19.3	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5 15.6	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8 54.6	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3 606.6	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1 596.7	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1 13.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360 0.352 0.350	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38 0.28	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56 1.00 2.21	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05 11.09 10.88	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89 10.91 10.69	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25 0.25	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5 19.3 25.3	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5 15.6 19.8	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8 54.6 159.7	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3 606.6 785.3	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1 596.7 771.4	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1 13.9 19.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360 0.352 0.350 0.345	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38 0.28 0.27 0.23	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56 1.00 2.21 5.18	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05 11.09 10.88 10.02	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89 10.91 10.69 9.87	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25 0.25 0.27 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5 19.3 25.3 14.9	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5 15.6 19.8 10.0	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8 54.6 159.7 223.9	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3 606.6 785.3 433.2	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1 596.7 771.4 426.4	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1 13.9 19.4 14.5 2.0 17.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360 0.352 0.355 0.345 0.333	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38 0.28 0.27 0.23 0.25	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56 1.00 2.21 5.18 3.11	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05 11.09 10.88 10.02 10.85	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89 10.91 10.69 9.87 10.68	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25 0.25 0.27 0.34 0.28	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.55% 0.2%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5 19.3 25.3 14.9 2.4	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5 15.6 19.8 10.0	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8 54.6 159.7 223.9 22.7	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3 606.6 785.3 433.2 79.2	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1 596.7 771.4 426.4 78.0	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1 13.9 19.4 14.5 2.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.409 1.778 2.409 0.434 0.387 0.360 0.352 0.355 0.345 0.333	HC (g/hp-hr) 6.32 8.07 6.32 0.94 0.57 0.38 0.28 0.27 0.23 0.25	(g/hp-hr) 14.72 10.15 14.72 1.52 0.95 0.56 1.00 2.21 5.18 3.11	(g/hp-hr) 56.27 50.89 56.27 10.31 10.00 10.05 11.09 10.88 10.02 10.85	(g/hp-hr) 55.15 49.89 55.15 10.11 9.83 9.89 10.91 10.69 9.87 10.68	(g/hp-hr) 1.71 1.11 1.71 0.26 0.24 0.25 0.25 0.27 0.34 0.28 0.51	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3 33.7 356.9	w-bsfc w-(lb/hp-hr) 0.0 7.2 13.9 11.0 20.8 20.5 19.3 25.3 14.9 2.4	w-HC w-(g/hr) 0.0 32.6 36.5 23.9 30.8 21.5 15.6 19.8 10.0 1.8 9.3	w-CO w-(g/hr) 0.0 41.0 84.9 38.7 51.0 31.8 54.6 159.7 22.9 22.7 80.0	w-(g/hr) 0.0 205.4 324.7 261.5 538.4 571.3 606.6 785.3 433.2 79.2 369.0	w-(g/hr) 0.0 201.4 318.2 256.6 528.9 562.1 596.7 771.4 426.4 78.0 364.2	w-(g/hr) 0.0 4.5 9.9 6.7 13.0 14.1 13.9 19.4 14.5 2.0 17.1

BNSF #9693 Test Date 09-22-98 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	45.5	144	283	1,034	1,012	40	DB-2	12.5%	2.4	5.7	18.0	35.4	129.3	126.5	5.0
Low Idle	14	24.9	84	151	703	688	14	Low Idle	19.0%	2.6	4.7	16.0	28.7	133.6	130.6	2.7
Idle	19	45.5	144	283	1,034	1,012	40	Idle	19.0%	3.7	8.6	27.4	53.8	196.5	192.2	7.6
N1	205	91.2	137	280	2,135	2,094	44	N1	6.5%	13.3	5.9	8.9	18.2	138.8	136.1	2.9
N2	439	172.0	184	377	4,435	4,352	82	N2	6.5%	28.5	11.2	12.0	24.5	288.3	282.9	5.3
N3	980	356.0	276	555	10,333	10,140	230	N3	5.2%	51.0	18.5	14.4	28.9	537.3	527.3	12.0
N4	1,520	539.0	393	1,671	17,184	16,863	388	N4	4.4%	66.9	23.7	17.3	73.5	756.1	742.0	17.1
N5	2,008	709.2	475	4,793	21,698	21,308	540	N5	3.8%	76.3	26.9	18.1	182.1	824.5	809.7	20.5
N6	2,881	1,001.3	748	17,066	30,229	29,747	1,044	N6	3.9%	112.4	39.1	29.2	665.6	1178.9	1160.1	40.7
N7	3,652	1,222.0	989	14,503	42,073	41,372	1,323	N7	3.0%	109.6	36.7	29.7	435.1	1262.2	1241.2	39.7
N8	4,230	1,404.9	1,255	11,982	44,464	43,753	2,247	N8	16.2%	685.3	227.6	203.3	1941.1	7203.2	7088.0	364.0
	.,	.,	1,200	,	,	,	sum =	TOTAL	100.0%	1151.9	408.7	394.0	3486.8	12648.6	12436.5	517.4
							EPA line-haul du	uty cycle weighted br	ake-specific emi	ssions	0.355	0.34	3.0	11.0	10.8	0.45
							EPA line-haul du	uty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								===	0.4. O							
									PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					СГ	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em bsfc	issions HC	со	Corr. NOx	KH-NOx	PM	Er	EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	Notch	EPA WF			Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	HC						EPA		w-bsfc	w-HC	w-CO			
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.358	HC (g/hp-hr) 7.46 6.22 7.46	(g/hp-hr) 14.66	(g/hp-hr) 53.58	(g/hp-hr) 52.42	(g/hp-hr) 2.07 1.04 2.07	Notch DB-2	EPA WF 0.0% 29.9% 29.9%	w-BHP 0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6	w-HC w-(g/hr) 0.0 25.1 43.1	w-CO w-(g/hr) 0.0 45.1 84.6	w-(g/hr) 0.0	w-(g/hr) 0.0 205.6 302.5	w-(g/hr) 0.0 4.2 12.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.358 1.844	HC (g/hp-hr) 7.46 6.22	(g/hp-hr) 14.66 11.19	(g/hp-hr) 53.58 52.07	(g/hp-hr) 52.42 50.93	(g/hp-hr) 2.07 1.04	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.4	w-HC w-(g/hr) 0.0 25.1	w-CO w-(g/hr) 0.0 45.1	w-(g/hr) 0.0 210.2	w-(g/hr) 0.0 205.6	w-(g/hr) 0.0 4.2
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358	HC (g/hp-hr) 7.46 6.22 7.46	(g/hp-hr) 14.66 11.19 14.66	(g/hp-hr) 53.58 52.07 53.58	(g/hp-hr) 52.42 50.93 52.42	(g/hp-hr) 2.07 1.04 2.07	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	w-BHP 0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6	w-HC w-(g/hr) 0.0 25.1 43.1	w-CO w-(g/hr) 0.0 45.1 84.6	w-(g/hr) 0.0 210.2 309.2	w-(g/hr) 0.0 205.6 302.5	w-(g/hr) 0.0 4.2 12.0
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446	HC (g/hp-hr) 7.46 6.22 7.46 0.67	(g/hp-hr) 14.66 11.19 14.66 1.37	(g/hp-hr) 53.58 52.07 53.58 10.43	(g/hp-hr) 52.42 50.93 52.42 10.24	(g/hp-hr) 2.07 1.04 2.07 0.22	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	w-BHP 0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3	w-HC w-(g/hr) 0.0 25.1 43.1 17.0	w-CO w-(g/hr) 0.0 45.1 84.6 34.7	w-(g/hr) 0.0 210.2 309.2 264.7	w-(g/hr) 0.0 205.6 302.5 259.7	w-(g/hr) 0.0 4.2 12.0 5.5
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	w-BHP 0.0 4.0 5.8 25.4 54.0	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4	w-(g/hr) 0.0 210.2 309.2 264.7 545.5	w-(g/hr) 0.0 205.6 302.5 259.7 535.3	w-(g/hr) 0.0 4.2 12.0 5.5 10.1
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363 0.355	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28 0.26	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57 1.10	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54 11.31	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35 11.09	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23 0.26	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6 19.4	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0 14.1	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2 60.2	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3 618.6	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1 607.1	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3 14.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363 0.355 0.353	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28 0.26 0.24	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57 1.10 2.39	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54 11.31 10.81	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35 11.09 10.61	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23 0.26 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8 54.7 72.3	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6 19.4 25.5	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0 14.1 17.1	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2 60.2 172.5	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3 618.6 781.1	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1 607.1 767.1	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3 14.0 19.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363 0.355 0.353 0.348	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28 0.26 0.24 0.26	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57 1.10 2.39 5.92	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54 11.31 10.81 10.49	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35 11.09 10.61 10.32	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23 0.26 0.27 0.36	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8 54.7 72.3 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6 19.4 25.5 15.0	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0 14.1 17.1 11.2	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2 60.2 172.5 256.0	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3 618.6 781.1 453.4	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1 607.1 767.1 446.2	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3 14.0 19.4 15.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363 0.355 0.353 0.348 0.335	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28 0.26 0.24 0.26 0.27	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57 1.10 2.39 5.92 3.97	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54 11.31 10.81 10.49 11.52	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35 11.09 10.61 10.32 11.33	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23 0.26 0.27 0.36	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8 54.7 72.3 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6 19.4 25.5 15.0 2.4	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0 14.1 17.1 11.2 2.0	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2 60.2 172.5 256.0 29.0	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3 618.6 781.1 453.4 84.1	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1 607.1 767.1 446.2 82.7	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3 14.0 19.4 15.7 2.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.358 1.844 2.358 0.446 0.392 0.363 0.355 0.353 0.348 0.335	HC (g/hp-hr) 7.46 6.22 7.46 0.67 0.42 0.28 0.26 0.24 0.26 0.27	(g/hp-hr) 14.66 11.19 14.66 1.37 0.86 0.57 1.10 2.39 5.92 3.97	(g/hp-hr) 53.58 52.07 53.58 10.43 10.11 10.54 11.31 10.81 10.49 11.52	(g/hp-hr) 52.42 50.93 52.42 10.24 9.92 10.35 11.09 10.61 10.32 11.33	(g/hp-hr) 2.07 1.04 2.07 0.22 0.19 0.23 0.26 0.27 0.36 0.36 0.53	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.8 25.4 54.0 56.8 54.7 72.3 43.2 7.3 33.8 357.4	w-bsfc w-(lb/hp-hr) 0.0 7.4 13.6 11.3 21.2 20.6 19.4 25.5 15.0 2.4	w-HC w-(g/hr) 0.0 25.1 43.1 17.0 22.6 16.0 14.1 17.1 11.2 2.0	w-CO w-(g/hr) 0.0 45.1 84.6 34.7 46.4 32.2 60.2 172.5 256.0 29.0 95.9	w-(g/hr) 0.0 210.2 309.2 264.7 545.5 599.3 618.6 781.1 453.4 84.1 355.7	w-(g/hr) 0.0 205.6 302.5 259.7 535.3 588.1 607.1 767.1 446.2 82.7 350.0	w-(g/hr) 0.0 4.2 12.0 5.5 10.1 13.3 14.0 19.4 15.7 2.6 18.0

BNSF #9693 Test Date 09-25-98 CARB Diesel Fuel EM-2663-F Run #3/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	46.9	167	273	1,062	1,046	50	DB-2	12.5%	2.4	5.9	20.9	34.1	132.8	130.7	6.3
Low Idle	14	24.5	94	158	714	704	18	Low Idle	19.0%	2.6	4.7	17.9	30.0	135.7	133.8	3.4
Idle	19	46.9	167	273	1,062	1,046	50	Idle	19.0%	3.7	8.9	31.7	51.9	201.8	198.7	9.5
N1	205	90.6	147	303	2,068	2,039	65	N1	6.5%	13.3	5.9	9.6	19.7	134.4	132.5	4.2
N2	438	170.4	208	386	4,484	4,429	113	N2	6.5%	28.4	11.1	13.5	25.1	291.5	287.9	7.3
N3	980	354.5	289	572	10,270	10,130	277	N3	5.2%	51.0	18.4	15.0	29.7	534.0	526.8	14.4
N4	1,519	537.0	386	1,597	16,292	16,094	409	N4	4.4%	66.8	23.6	17.0	70.3	716.8	708.1	18.0
N5	2,006	706.5	484	4,442	21,368	21,123	543	N5	3.8%	76.2	26.8	18.4	168.8	812.0	802.7	20.6
N6	2,882	998.4	610	15,906	29,343	28,683	837	N6	3.9%	112.4	38.9	23.8	620.3	1144.4	1118.6	32.6
N7	3,655	1,216.8	854	12,889	42,725	41,570	1,050	N7	3.0%	109.6	36.5	25.6	386.7	1281.8	1247.1	31.5
N8	4,211	1,392.2	1,084	10,948	44,628	43,506	2,024	N8	16.2%	682.2	225.5	175.6	1773.6	7229.7	7048.0	327.9
							sum =	TOTAL	100.0%	1148.6	406.3	369.0	3210.2	12614.8	12335.0	475.8
							EPA line-haul dut	ty cycle weighted br	rake-specific emi	ssions	0.354	0.32	2.8	11.0	10.7	0.41
							EPA line-haul dut	ty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EI	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EI	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	El	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake	•	HC					El	,	w-BHP		w-HC	w-CO			
	Notch brake	bsfc		CO (g/hp-hr) 14.15	Corr. NOx (g/hp-hr) 55.03	KH-NOx (g/hp-hr) 54.18	PM (g/hp-hr) 2.59		EPA	w-BHP 0.0	w-bsfc			w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.430	HC (g/hp-hr) 8.65	(g/hp-hr) 14.15	(g/hp-hr) 55.03	(g/hp-hr) 54.18	(g/hp-hr) 2.59	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.430 1.815	HC (g/hp-hr) 8.65 6.96	(g/hp-hr) 14.15 11.70	(g/hp-hr) 55.03 52.89	(g/hp-hr) 54.18 52.17	(g/hp-hr) 2.59 1.33	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.3	w-HC w-(g/hr) 0.0 28.1	w-CO w-(g/hr) 0.0 47.2	w-(g/hr) 0.0 213.5	w-(g/hr) 0.0 210.6	w-(g/hr) 0.0 5.4
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430	HC (g/hp-hr) 8.65 6.96 8.65	(g/hp-hr) 14.15 11.70 14.15	(g/hp-hr) 55.03 52.89 55.03	(g/hp-hr) 54.18 52.17 54.18	(g/hp-hr) 2.59 1.33 2.59	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0	w-HC w-(g/hr) 0.0 28.1 49.9	w-CO w-(g/hr) 0.0 47.2 81.6	w-(g/hr) 0.0 213.5 317.5 256.4 551.5	w-(g/hr) 0.0 210.6 312.6	w-(g/hr) 0.0 5.4 15.0
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443	HC (g/hp-hr) 8.65 6.96 8.65 0.72	(g/hp-hr) 14.15 11.70 14.15 1.48	(g/hp-hr) 55.03 52.89 55.03 10.10	(g/hp-hr) 54.18 52.17 54.18 9.96	(g/hp-hr) 2.59 1.33 2.59 0.32	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2	w-HC w-(g/hr) 0.0 28.1 49.9 18.2	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7	w-(g/hr) 0.0 210.6 312.6 252.8	w-(g/hr) 0.0 5.4 15.0 8.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.58 1.05	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.8 25.4 53.8 56.9 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.58 1.05 2.21	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352 0.346	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24 0.21	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.88 1.05 2.21 5.52	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65 10.18	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53 9.95	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4 15.0	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4 9.2	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9 238.6	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2 440.1	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4 430.2	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5 12.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352 0.346 0.333	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24 0.21 0.23	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.58 1.05 2.21 5.52 3.53	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65 10.18 11.69	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53 9.95 11.37	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4 15.0 2.4	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4 9.2 1.7	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9 238.6 25.8	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2 440.1 85.5	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4 430.2 83.1	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5 12.6 2.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352 0.346	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24 0.21	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.88 1.05 2.21 5.52	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65 10.18	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53 9.95	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4 15.0 2.4	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4 9.2 1.7 8.7	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9 238.6 25.8 87.6	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2 440.1 85.5 357.0	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4 430.2 83.1 348.1	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5 12.6 2.1 16.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352 0.346 0.333	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24 0.21 0.23	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.58 1.05 2.21 5.52 3.53	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65 10.18 11.69	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53 9.95 11.37	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27 0.27	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4 15.0 2.4	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4 9.2 1.7	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9 238.6 25.8	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2 440.1 85.5	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4 430.2 83.1	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5 12.6 2.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.430 1.815 2.430 0.443 0.389 0.362 0.354 0.352 0.346 0.333	HC (g/hp-hr) 8.65 6.96 8.65 0.72 0.48 0.29 0.25 0.24 0.21 0.23	(g/hp-hr) 14.15 11.70 14.15 1.48 0.88 0.58 1.05 2.21 5.52 3.53	(g/hp-hr) 55.03 52.89 55.03 10.10 10.25 10.48 10.73 10.65 10.18 11.69	(g/hp-hr) 54.18 52.17 54.18 9.96 10.12 10.34 10.60 10.53 9.95 11.37	(g/hp-hr) 2.59 1.33 2.59 0.32 0.26 0.28 0.27 0.27 0.29 0.29 0.48	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 4.0 5.8 25.4 53.8 56.9 54.7 72.2 43.2 7.3 33.7 357.0	w-bsfc w-(lb/hp-hr) 0.0 7.3 14.0 11.2 21.0 20.6 19.3 25.4 15.0 2.4	w-HC w-(g/hr) 0.0 28.1 49.9 18.2 25.6 16.8 13.9 17.4 9.2 1.7 8.7	w-CO w-(g/hr) 0.0 47.2 81.6 37.6 47.5 33.2 57.5 159.9 238.6 25.8 87.6	w-(g/hr) 0.0 213.5 317.5 256.4 551.5 595.7 586.5 769.2 440.1 85.5 357.0	w-(g/hr) 0.0 210.6 312.6 252.8 544.8 587.6 579.4 760.4 430.2 83.1 348.1	w-(g/hr) 0.0 5.4 15.0 8.1 13.9 16.1 14.7 19.5 12.6 2.1 16.2

BNSF No. 9693 Test Results Using On-Highway Diesel Fuel

BNSF #9693 Test Date 09-16-98 On-Highway Fuel EM-2677-F Run #1/3

				,												
SwRI Proj	ect 08-2062	-001							EDA Line Head	Weighted Resu	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		EPA Line-Haul WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	46.6	181	364	1,115	1,085	31	DB-2	12.5%	2.4	5.8	22.6	45.5	139.4	135.7	3.9
Low Idle	14	26.5	108	204	795	774	17	Low Idle	19.0%	2.6	5.0	20.5	38.8	151.1	147.0	3.2
Idle	19	46.6	181	364	1,115	1,085	31	Idle	19.0%	3.7	8.9	34.4	69.2	211.9	206.2	5.9
N1	205	92.4	155	374	2,255	2,193	50	N1	6.5%	13.3	6.0	10.1	24.3	146.6	142.5	3.3
N2	437	170.9	199	444	4,405	4,298	90	N2	6.5%	28.4	11.1	12.9	28.9	286.3	279.4	5.9
N3	980	354.5	308	594	10.220	9,954	216	N3	5.2%	50.9	18.4	16.0	30.9	531.4	517.6	11.2
N4	1,519	538.5	382	1,495	17,243	16,828	356	N4	4.4%	66.8	23.7	16.8	65.8	758.7	740.4	15.7
N5	2.005	706.8	450	3,980	21,325	20.828	502	N5	3.8%	76.2	26.9	17.1	151.2	810.4	791.5	19.1
N6	2,881	993.6	579	13,416	30,745	30,005	890	N6	3.9%	112.4	38.8	22.6	523.2	1199.1	1170.2	34.7
N7	3,655	1,214.4	841	9,893	43,803	42,767	1,119	N7	3.0%	109.7	36.4	25.2	296.8	1314.1	1283.0	33.6
N8	4,210	1,393.2	1,001	9,916	46,932	45,821	2,184	N8	16.2%	682.0	225.7	162.2	1606.4	7603.0	7423.0	353.8
	, -	,	,	.,.	-,	-,-	sum =	TOTAL	100.0%	1148.4	406.7	360.4	2880.9	13151.8	12836.6	490.2
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.354	0.31	2.5	11.5	11.2	0.43
								duty cycle maximum				1.00	5.0	9.5	9.5	0.60
								Е	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.402	9.33	18.76	57.47	55.94	1.60	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.963	8.00	15.11	58.89	57.31	1.26	Low Idle	29.9%	4.0	7.9	32.3	61.0	237.7	231.3	5.1
Idle		2.402	9.33	18.76	57.47	55.94	1.60	Idle	29.9%	5.8	13.9	54.1	108.8	333.4	324.5	9.3
N1		0.452	0.76	1.83	11.02	10.72	0.24	N1	12.4%	25.4	11.5	19.2	46.4	279.6	271.9	6.2
N2		0.391	0.45	1.02	10.07	9.83	0.21	N2	12.3%	53.8	21.0	24.5	54.6	541.8	528.7	11.1
N3		0.362	0.31	0.61	10.43	10.16	0.22	N3	5.8%	56.8	20.6	17.9	34.5	592.8	577.4	12.5
N4		0.355	0.25	0.98	11.35	11.08	0.23	N4	3.6%	54.7	19.4	13.8	53.8	620.7	605.8	12.8
N5		0.353	0.22	1.99	10.64	10.39	0.25	N5	3.6%	72.2	25.4	16.2	143.3	767.7	749.8	18.1
N6		0.345	0.20	4.66	10.67	10.41	0.31	N6	1.5%	43.2	14.9	8.7	201.2	461.2	450.1	13.4
N7		0.332	0.23	2.71	11.98	11.70	0.31	N7	0.2%	7.3	2.4	1.7	19.8	87.6	85.5	2.2
N8		0.331	0.24	2.36	11.15	10.88	0.52	N8	0.8%	33.7	11.1	8.0	79.3	375.5	366.6	17.5
								TOTAL	100.0%	356.9	148.2	196.3	802.7	4298.0	4191.6	108.1
							EPA switch du	ıty cycle weighted bra	ke-specific emiss	sions	0.415	0.55	2.25	12.04	11.75	0.30
							EPA switch cy	cle maximum Tier 0	•			2.10	8.0	14.0	14.0	0.72

BNSF #9693 Test Date 09-18-98 On-Highway Fuel EM-2677-F Run #2/3

SwRI Proj	ect 08-2062	-001							5041: II	Weighted Resu	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		EPA Line-Hau WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	45.5	133	311	1,109	1,091	48	DB-2	12.5%	2.4	5.7	16.6	38.9	138.6	136.3	6.0
Low Idle	14	24.8	91	172	784	769	14	Low Idle	19.0%	2.6	4.7	17.3	32.7	149.0	146.2	2.7
Idle	19	45.5	133	311	1,109	1,091	48	Idle	19.0%	3.7	8.6	25.3	59.1	210.7	207.2	9.1
N1	205	90.0	135	268	2,223	2,187	44	N1	6.5%	13.3	5.9	8.8	17.4	144.5	142.1	2.9
N2	439	171.6	200	424	4,551	4,494	97	N2	6.5%	28.5	11.2	13.0	27.6	295.8	292.1	6.3
N3	980	356.0	281	585	10.121	9,998	232	N3	5.2%	51.0	18.5	14.6	30.4	526.3	519.9	12.1
N4	1,519	544.0	362	1,559	17,585	17,381	373	N4	4.4%	66.8	23.9	15.9	68.6	773.7	764.8	16.4
N5	2.005	705.6	475	4,139	21,949	21,692	518	N5	3.8%	76.2	26.8	18.1	157.3	834.1	824.3	19.7
N6	2,881	1,002.8	674	15,066	30,356	30,055	954	N6	3.9%	112.3	39.1	26.3	587.6	1183.9	1172.2	37.2
N7	3,654	1,220.4	886	11,708	43,465	42,997	1,074	N7	3.0%	109.6	36.6	26.6	351.2	1304.0	1289.9	32.2
N8	4,206	1,396.8	1,137	10,270	46,948	46,422	2,101	N8	16.2%	681.4	226.3	184.2	1663.7	7605.6	7520.4	340.4
	,	,	, -	-,	-,-	-,	sum =	TOTAL	100.0%	1147.8	407.3	366.6	3034.5	13166.1	13015.4	484.9
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.355	0.319	2.644	11.471	11.340	0.422
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.358	6.89	16.11	57.46	56.51	2.49	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.837	6.74	12.74	58.07	56.99	1.04	Low Idle	29.9%	4.0	7.4	27.2	51.4	234.4	230.0	4.2
Idle		2.358	6.89	16.11	57.46	56.51	2.49	Idle	29.9%	5.8	13.6	39.8	93.0	331.6	326.1	14.4
N1		0.440	0.66	1.31	10.87	10.69	0.22	N1	12.4%	25.4	11.2	16.7	33.2	275.7	271.2	5.5
N2		0.391	0.46	0.97	10.38	10.25	0.22	N2	12.3%	53.9	21.1	24.6	52.2	559.8	552.7	11.9
N3		0.363	0.29	0.60	10.33	10.20	0.24	N3	5.8%	56.8	20.6	16.3	33.9	587.0	579.9	13.5
N4		0.358	0.24	1.03	11.58	11.45	0.25	N4	3.6%	54.7	19.6	13.0	56.1	633.1	625.7	13.4
N5		0.352	0.24	2.06	10.95	10.82	0.26	N5	3.6%	72.2	25.4	17.1	149.0	790.2	780.9	18.6
N6		0.348	0.23	5.23	10.54	10.43	0.33	N6	1.5%	43.2	15.0	10.1	226.0	455.3	450.8	14.3
N7		0.334	0.24	3.20	11.89	11.77	0.29	N7	0.2%	7.3	2.4	1.8	23.4	86.9	86.0	2.1
N8		0.332	0.27	2.44	11.16	11.04	0.50	N8	0.8%	33.6	11.2	9.1	82.2	375.6	371.4	16.8
								TOTAL	100.0%	357.0	147.6	175.7	800.4	4329.5	4274.7	114.7
								ty cycle weighted brai	ke-specific emis	sions	0.413	0.492	2.242	12.129	11.975	0.321
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF #9693 Test Date 09-23-98, 09-24-98 On-Highway Fuel EM-2677-F Run #3/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	48.0	148	312	1,113	1,089	48	DB-2	12.5%	2.4	6.0	18.5	39.0	139.1	136.2	6.0
Low Idle	14	26.0	86	170	746	731	42	Low Idle	19.0%	2.6	4.9	16.3	32.3	141.7	138.8	8.0
Idle	19	48.0	148	312	1,113	1,089	48	Idle	19.0%	3.7	9.1	28.1	59.3	211.5	207.0	9.1
N1	205	91.8	144	345	2,208	2,161	57	N1	6.5%	13.3	6.0	9.4	22.4	143.5	140.5	3.7
N2	439	172.3	195	448	4,537	4,439	100	N2	6.5%	28.5	11.2	12.7	29.1	294.9	288.6	6.5
N3	980	358.5	297	556	9,931	9,738	217	N3	5.2%	51.0	18.6	15.4	28.9	516.4	506.4	11.3
N4	1,520	542.6	385	1,485	14,426	14,087	363	N4	4.4%	66.9	23.9	16.9	65.3	634.7	619.8	16.0
N5	2,008	711.3	497	4,281	21,829	21,406	525	N5	3.8%	76.3	27.0	18.9	162.7	829.5	813.4	20.0
N6	2,891	1,007.1	711	15,980	30,060	29,490	1,011	N6	3.9%	112.7	39.3	27.7	623.2	1172.3	1150.1	39.4
N7	3,652	1,225.5	969	12,396	42,737	41,916	1,094	N7	3.0%	109.6	36.8	29.1	371.9	1282.1	1257.5	32.8
N8	4,208	1,403.1	1,223	10,098	45,781	44,930	2,074	N8	16.2%	681.7	227.3	198.1	1635.9	7416.5	7278.7	336.0
							sum =	TOTAL	100.0%	1148.6	410.1	391.2	3070.0	12782.4	12536.9	488.7
							EPA line-haul	duty cycle weighted bra	ake-specific emi	ssions	0.357	0.34	2.7	11.1	10.9	0.43
							EPA line-haul	duty cycle maximum Ti	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions						Í			Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.487	7.67	16.17	57.67	56.45	2.49	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.926	6.37	12.59	55.26	54.12	3.11	Low Idle	29.9%	4.0	7.8	25.7	50.8	223.1	218.5	12.6
Idle		2.487	7.67	16.17	57.67	56.45	2.49	Idle	29.9%	5.8	14.4	44.3	93.3	332.8	325.7	14.4
N1		0.449	0.70	1.69	10.79	10.56	0.28	N1	12.4%	25.4	11.4	17.9	42.8	273.8	268.0	7.1
N2		0.393	0.44	1.02	10.35	10.12	0.23	N2	12.3%	53.9	21.2	24.0	55.1	558.1	546.0	12.3
N3		0.366	0.30	0.57	10.13	9.93	0.22	N3	5.8%	56.9	20.8	17.2	32.2	576.0	564.8	12.6
N4		0.357	0.25	0.98	9.49	9.27	0.24	N4	3.6%	54.7	19.5	13.9	53.5	519.3	507.1	13.1
N5		0.354	0.25	2.13	10.87	10.66	0.26	N5	3.6%	72.3	25.6	17.9	154.1	785.8	770.6	18.9
N6		0.348	0.25	5.53	10.40	10.20	0.35	N6	1.5%	43.4	15.1	10.7	239.7	450.9	442.4	15.2
N7		0.336	0.27	3.39	11.70	11.48	0.30	N7	0.2%	7.3	2.5	1.9	24.8	85.5	83.8	2.2
N8		0.333	0.29	2.40	10.88	10.68	0.49	N8	0.8%	33.7	11.2	9.8	8.08	366.2	359.4	16.6
								TOTAL	100.0%	357.3	149.4	183.2	827.1	4171.5	4086.4	124.8
							EPA switch du	ty cycle weighted brak	e-specific emiss	ions	0.418	0.51	2.31	11.67	11.44	0.35
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF No. 9693 Test Results Using High-Sulfur Diesel Fuel

BNSF #9693 Test Date 09-17-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	49.4	125	337	1,172	1,146	35	DB-2	12.5%	2.4	6.2	15.6	42.1	146.5	143.3	4.4
Low Idle	14	25.2	70	168	748	731	17	Low Idle	19.0%	2.6	4.8	13.3	31.9	142.1	138.9	3.2
Idle	19	49.4	125	337	1,172	1,146	35	Idle	19.0%	3.7	9.4	23.8	64.0	222.7	217.8	6.7
N1	206	92.4	116	321	2,261	2,213	49	N1	6.5%	13.4	6.0	7.5	20.9	147.0	143.8	3.2
N2	439	174.9	166	433	4,628	4,532	100	N2	6.5%	28.5	11.4	10.8	28.1	300.8	294.6	6.5
N3	979	360.0	238	492	10,216	9,998	264	N3	5.2%	50.9	18.7	12.4	25.6	531.2	519.9	13.7
N4	1,519	544.0	296	1,338	17,615	17,243	452	N4	4.4%	66.8	23.9	13.0	58.9	775.1	758.7	19.9
N5	2,007	714.0	348	3,782	21,885	21,430	660	N5	3.8%	76.3	27.1	13.2	143.7	831.6	814.3	25.1
N6	2,884	1,005.6	495	13,475	30,833	30,202	1,118	N6	3.9%	112.5	39.2	19.3	525.5	1202.5	1177.9	43.6
N7	3,655	1,220.4	618	10,329	42,912	42,051	1,228	N7	3.0%	109.7	36.6	18.5	309.9	1287.4	1261.5	36.8
N8	4,209	1,398.0	761	9,123	47,229	46,343	2,318	N8	16.2%	681.8	226.5	123.3	1477.9	7651.1	7507.6	375.5
							sum =	TOTAL	100.0%	1148.5	409.8	270.8	2728.6	13238.0	12978.3	538.6
							EPA line-haul duty	cycle weighted by	ake-specific emis	sions	0.357	0.24	2.4	11.5	11.3	0.47
							EPA line-haul duty			0.01.0	0.007	1.00	5.0	9.5	9.5	0.60
							•	•								
Individual I	Notch brake	-snacific am	issions					El	PA Switch Cycle			Weighted R	eculte			
Individual I	Notch brake	-specific em	issions					EI	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em bsfc	issions HC	со	Corr. NOx	KH-NOx	PM	El	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	Notch	·	w-BHP		•		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
Notch DB-2	Notch brake	bsfc	HC					Notch DB-2	EPA WF 0.0%	w-BHP 0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC	w-CO			
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.546 1.867	HC (g/hp-hr) 6.44 5.19	(g/hp-hr) 17.37 12.44	(g/hp-hr) 60.41 55.41	(g/hp-hr) 59.08 54.17	(g/hp-hr) 1.80 1.26	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.5	w-HC w-(g/hr) 0.0 20.9	w-CO w-(g/hr) 0.0 50.2	w-(g/hr) 0.0 223.7	w-(g/hr) 0.0 218.6	w-(g/hr) 0.0 5.1
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546	HC (g/hp-hr) 6.44 5.19 6.44	(g/hp-hr) 17.37 12.44 17.37	(g/hp-hr) 60.41 55.41 60.41	(g/hp-hr) 59.08 54.17 59.08	(g/hp-hr) 1.80 1.26 1.80	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8	w-HC w-(g/hr) 0.0 20.9 37.4	w-CO w-(g/hr) 0.0 50.2 100.8	w-(g/hr) 0.0 223.7 350.4	w-(g/hr) 0.0 218.6 342.7	w-(g/hr) 0.0 5.1 10.5
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449	HC (g/hp-hr) 6.44 5.19 6.44 0.56	(g/hp-hr) 17.37 12.44 17.37 1.56	(g/hp-hr) 60.41 55.41 60.41 11.00	(g/hp-hr) 59.08 54.17 59.08 10.76	(g/hp-hr) 1.80 1.26 1.80 0.24	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.8 25.5	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5	w-HC w-(g/hr) 0.0 20.9 37.4 14.4	w-CO w-(g/hr) 0.0 50.2 100.8 39.8	w-(g/hr) 0.0 223.7 350.4 280.4	w-(g/hr) 0.0 218.6 342.7 274.4	w-(g/hr) 0.0 5.1 10.5 6.1
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.8 25.5 53.9	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3	w-(g/hr) 0.0 223.7 350.4 280.4 569.2	w-(g/hr) 0.0 218.6 342.7 274.4 557.4	w-(g/hr) 0.0 5.1 10.5 6.1 12.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.8 25.5 53.9 56.8	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.8 25.5 53.9 56.8 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6 25.7	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.39	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6 25.7 15.1	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5 453.0	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349 0.334	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67 2.83	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69 11.74	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47 11.50	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.39 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 20.9 19.6 25.7 15.1 2.4	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1 20.7	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5 85.8	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5 453.0 84.1	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8 2.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.39	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6 25.7 15.1 2.4	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4 1.2 6.1	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1 20.7 73.0	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5 85.8 377.8	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5 453.0 84.1 370.7	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8 2.5 18.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349 0.334	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67 2.83	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69 11.74	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47 11.50	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.39 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 20.9 19.6 25.7 15.1 2.4	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1 20.7	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5 85.8	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5 453.0 84.1	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8 2.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349 0.334	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67 2.83	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69 11.74	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47 11.50	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.33 0.39 0.34 0.55	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3 7.3 33.7 357.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6 25.7 15.1 2.4 11.2 150.2	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4 1.2 6.1 144.8	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1 20.7 73.0 752.7	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5 85.8 377.8 4364.4	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 557.9 620.7 771.5 453.0 84.1 370.7 4273.1	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8 2.5 18.5 127.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.546 1.867 2.546 0.449 0.399 0.368 0.358 0.356 0.349 0.334	HC (g/hp-hr) 6.44 5.19 6.44 0.56 0.38 0.24 0.19 0.17 0.17	(g/hp-hr) 17.37 12.44 17.37 1.56 0.99 0.50 0.88 1.88 4.67 2.83	(g/hp-hr) 60.41 55.41 60.41 11.00 10.55 10.43 11.59 10.91 10.69 11.74	(g/hp-hr) 59.08 54.17 59.08 10.76 10.33 10.21 11.35 10.68 10.47 11.50	(g/hp-hr) 1.80 1.26 1.80 0.24 0.23 0.27 0.30 0.33 0.39 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.0 5.8 25.5 53.9 56.8 54.7 72.2 43.3 7.3 33.7 357.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.8 11.5 21.5 20.9 19.6 25.7 15.1 2.4	w-HC w-(g/hr) 0.0 20.9 37.4 14.4 20.4 13.8 10.7 12.5 7.4 1.2 6.1	w-CO w-(g/hr) 0.0 50.2 100.8 39.8 53.3 28.5 48.2 136.2 202.1 20.7 73.0	w-(g/hr) 0.0 223.7 350.4 280.4 569.2 592.5 634.1 787.9 462.5 85.8 377.8	w-(g/hr) 0.0 218.6 342.7 274.4 557.4 579.9 620.7 771.5 453.0 84.1 370.7	w-(g/hr) 0.0 5.1 10.5 6.1 12.3 15.3 16.3 23.8 16.8 2.5 18.5

BNSF #9693 Test Date 09-18-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/3

SwRI Proje	ect 08-2062			g cana. s			20			Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	19 14 19 205 439 980 1,519 2,007 2,884 3,655 4,209	48.0 25.5 48.0 92.0 174.0 360.0 544.0 714.0 1,002.0 1,217.0 1,394.4	165 95 165 143 203 318 381 472 791 935 1,203	312 164 312 319 407 559 1,408 3,868 15,023 9,973 9,003	1,167 767 1,167 2,279 4,631 10,483 17,368 22,014 34,912 43,441 48,761	1,146 751 1,146 2,240 4,553 10,300 17,089 21,621 34,344 42,694 47,940	35 14 35 52 114 311 436 639 1,022 1,246 2,699	DB-2 Low idle Idle N1 N2 N3 N4 N5 N6 N7	12.5% 19.0% 19.0% 6.5% 6.5% 5.2% 4.4% 3.8% 3.9% 3.0% 16.2%	2.4 2.6 3.7 13.3 28.5 51.0 66.8 76.2 112.5 109.7 681.8	6.0 4.8 9.1 6.0 11.3 18.7 23.9 27.1 39.1 36.5 225.9	20.6 18.1 31.4 9.3 13.2 16.5 16.8 17.9 30.8 28.1 194.9	39.0 31.2 59.3 20.7 26.5 29.1 62.0 147.0 585.9 299.2 1458.5	145.9 145.7 221.7 148.1 301.0 545.1 764.2 836.5 1361.6 1303.2 7899.3	143.3 142.8 217.8 145.6 295.9 535.6 751.9 821.6 1339.4 1280.8 7766.3	4.4 2.7 6.7 3.4 7.4 16.2 19.2 24.3 39.9 37.4 437.2
Individual I	Notch brake	-specific em	ilssions					TOTAL duty cycle weighted br duty cycle maximum T			408.5 0.356	397.5 0.35 1.00 Weighted R	2758.2 2.4 5.0 esults	13672.4 11.9 9.5	13441.0 11.7 9.5	598.6 0.52 0.60
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7		bsfc (lb/hp-hr) 2.474 1.889 2.474 0.450 0.397 0.367 0.358 0.356 0.347 0.333 0.331	HC (g/hp-hr) 8.51 7.04 8.51 0.70 0.46 0.32 0.25 0.24 0.27 0.26 0.29	CO (g/hp-hr) 16.08 12.15 16.08 1.56 0.93 0.57 0.93 1.93 5.21 2.73 2.14	Corr. NOx (g/hp-hr) 60.15 56.81 60.15 11.14 10.56 10.69 11.43 10.97 12.11 11.88 11.59	KH-NOx (g/hp-hr) 59.08 55.66 59.08 10.95 10.38 10.51 11.25 10.78 11.91 11.68 11.39	PM (g/hp-hr) 1.80 1.04 1.80 0.25 0.26 0.32 0.29 0.32 0.32 0.34 0.64	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	w-BHP 0.0 4.0 5.8 25.4 53.9 56.9 54.7 72.2 43.3 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.4 11.4 21.4 20.9 19.6 25.7 15.0 2.4 11.2 149.6	w-HC w-(g/hr) 0.0 28.4 49.3 17.7 25.0 18.4 13.7 17.0 11.9 9.6 193.0	w-CO w-(g/hr) 0.0 49.0 93.3 39.6 50.1 32.4 50.7 139.2 225.3 19.9 72.0 771.6	w-NOx w-(g/hr) 0.0 229.3 348.9 282.6 569.6 608.0 625.2 792.5 523.7 86.9 390.1 4456.9	w-KH-NOx w-(g/hr) 0.0 224.7 342.7 277.7 560.0 597.4 615.2 778.3 515.2 85.4 383.5 4380.1	w-PM w-(g/hr) 0.0 4.2 10.5 6.4 14.0 18.0 15.7 23.0 15.3 2.5 21.6 131.3
								uty cycle weighted brak cle maximum Tier 0	e-specific emis	sions	0.419	0.54 2.10	2.16 8.0	12.48 14.0	12.26 14.0	0.37 0.72

BNSF #9693 Test Date 09-24-98, 09-25-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #3/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.5	153	335	1,457	1.431	55	DB-2	12.5%	2.4	5.9	19.1	41.9	182.1	178.8	6.9
Low Idle	14	25.2	93	168	764	750	17	Low Idle	19.0%	2.6	4.8	17.7	31.9	145.2	142.6	3.2
Idle	19	47.5	153	335	1,457	1,431	55	Idle	19.0%	3.7	9.0	29.1	63.7	276.8	271.8	10.5
N1	205	93.0	144	332	2,343	2,311	50	N1	6.5%	13.3	6.0	9.4	21.6	152.3	150.2	3.3
N2	438	174.0	199	453	4,588	4,518	100	N2	6.5%	28.5	11.3	12.9	29.4	298.2	293.6	6.5
N3	980	361.0	295	566	10,371	10,234	287	N3	5.2%	51.0	18.8	15.3	29.4	539.3	532.2	14.9
N4	1,519	543.6	396	1,466	17,648	17,251	456	N4	4.4%	66.9	23.9	17.4	64.5	776.5	759.1	20.1
N5	2,008	713.3	510	3,646	21,813	21,338	657	N5	3.8%	76.3	27.1	19.4	138.5	828.9	810.9	25.0
N6	2,882	1,003.2	726	13,153	31,314	30,656	1,141	N6	3.9%	112.4	39.1	28.3	513.0	1221.2	1195.6	44.5
N7	3,656	1,221.4	986	9,799	43,742	42,964	1,478	N7	3.0%	109.7	36.6	29.6	294.0	1312.3	1288.9	44.3
N8	4,209	1,400.0	1,354	8,967	49,064	48,209	2,469	N8	16.2%	681.9	226.8	219.3	1452.7	7948.4	7809.8	400.0
							sum =	TOTAL	100.0%	1148.4	409.5	417.5	2680.5	13681.2	13433.5	579.1
							EPA line-haul duty	cycle weighted br	ake-specific emi	issions	0.357	0.36	2.3	11.9	11.7	0.50
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								El	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EI	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	e-specific em bsfc	issions HC	со	Corr. NOx	KH-NOx	PM	EI	EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	•		CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	Notch	EPA WF			Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.461	HC (g/hp-hr) 7.93	(g/hp-hr) 17.36	(g/hp-hr) 75.49	(g/hp-hr) 74.12	(g/hp-hr) 2.85	Notch DB-2	EPA WF 0.0%	w-BHP	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.461 1.867	HC (g/hp-hr) 7.93 6.89	(g/hp-hr) 17.36 12.44	(g/hp-hr) 75.49 56.59	(g/hp-hr) 74.12 55.59	(g/hp-hr) 2.85 1.26	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.5	w-HC w-(g/hr) 0.0 27.8	w-CO w-(g/hr) 0.0 50.2	w-(g/hr) 0.0 228.4	w-(g/hr) 0.0 224.4	w-(g/hr) 0.0 5.1
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461	HC (g/hp-hr) 7.93 6.89 7.93	(g/hp-hr) 17.36 12.44 17.36	(g/hp-hr) 75.49 56.59 75.49	(g/hp-hr) 74.12 55.59 74.12	(g/hp-hr) 2.85 1.26 2.85	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	w-BHP 0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2	w-HC w-(g/hr) 0.0 27.8 45.7	w-CO w-(g/hr) 0.0 50.2 100.2	w-(g/hr) 0.0 228.4 435.6	w-(g/hr) 0.0 224.4 427.8	w-(g/hr) 0.0 5.1 16.4
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454	HC (g/hp-hr) 7.93 6.89 7.93 0.70	(g/hp-hr) 17.36 12.44 17.36 1.62	(g/hp-hr) 75.49 56.59 75.49 11.45	(g/hp-hr) 74.12 55.59 74.12 11.29	(g/hp-hr) 2.85 1.26 2.85 0.24	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	w-BHP 0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5	w-HC w-(g/hr) 0.0 27.8 45.7 17.9	w-CO w-(g/hr) 0.0 50.2 100.2 41.2	w-(g/hr) 0.0 228.4 435.6 290.5	w-(g/hr) 0.0 224.4 427.8 286.5	w-(g/hr) 0.0 5.1 16.4 6.2
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	w-BHP 0.0 4.0 5.8 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7	w-(g/hr) 0.0 228.4 435.6 290.5 564.3	w-(g/hr) 0.0 224.4 427.8 286.5 555.7	w-(g/hr) 0.0 5.1 16.4 6.2 12.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.368	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.368 0.358	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.368 0.358	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.368 0.355 0.348	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25 0.25	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82 4.56	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86 10.87	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63 10.64	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33 0.40	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7 15.0	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4 10.9	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3 197.3	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3 469.7	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2 459.8	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7 17.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.358 0.355 0.348 0.334	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25 0.27	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82 4.56 2.68	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86 10.87 11.97	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63 10.64 11.75	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33 0.40 0.40	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7 15.0 2.4	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4 10.9 2.0	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3 197.3	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3 469.7 87.5	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2 459.8 85.9	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7 17.1 3.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.368 0.355 0.348	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25 0.25	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82 4.56	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86 10.87	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63 10.64	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33 0.40	Notch	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3 43.2 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7 15.0 2.4	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4 10.9 2.0	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3 197.3 19.6 71.7	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3 469.7 87.5 392.5	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2 459.8 85.9 385.7	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7 17.1 3.0 19.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.358 0.355 0.348 0.334	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25 0.27	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82 4.56 2.68	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86 10.87 11.97	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63 10.64 11.75	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33 0.40 0.40	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7 15.0 2.4	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4 10.9 2.0	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3 197.3	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3 469.7 87.5	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2 459.8 85.9	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7 17.1 3.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.461 1.867 2.461 0.454 0.398 0.358 0.355 0.348 0.334	HC (g/hp-hr) 7.93 6.89 7.93 0.70 0.45 0.30 0.26 0.25 0.27	(g/hp-hr) 17.36 12.44 17.36 1.62 1.03 0.58 0.96 1.82 4.56 2.68	(g/hp-hr) 75.49 56.59 75.49 11.45 10.48 10.58 11.62 10.86 10.87 11.97	(g/hp-hr) 74.12 55.59 74.12 11.29 10.32 10.44 11.35 10.63 10.64 11.75	(g/hp-hr) 2.85 1.26 2.85 0.24 0.23 0.29 0.30 0.33 0.40 0.40	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.8 25.4 53.8 56.8 54.7 72.3 43.2 7.3 33.7 357.1	w-bsfc w-(lb/hp-hr) 0.0 7.5 14.2 11.5 21.4 20.9 19.6 25.7 15.0 2.4	w-HC w-(g/hr) 0.0 27.8 45.7 17.9 24.5 17.1 14.3 18.4 10.9 2.0	w-CO w-(g/hr) 0.0 50.2 100.2 41.2 55.7 32.8 52.8 131.3 197.3 19.6 71.7	w-(g/hr) 0.0 228.4 435.6 290.5 564.3 601.5 635.3 785.3 469.7 87.5 392.5	w-(g/hr) 0.0 224.4 427.8 286.5 555.7 593.6 621.0 768.2 459.8 85.9 385.7	w-(g/hr) 0.0 5.1 16.4 6.2 12.3 16.6 16.4 23.7 17.1 3.0 19.8

BNSF No. 9693 Smoke Test Summary

SMOKE TEST SUMMARY FOR BNSF NO. 9693

Run #	SS	30-sec	3-sec
Carb Diesel	(EM-2663	3-F)	
# 1	17	25	28
# 2	21	24	26
# 3	19	26	29
Avg	19	25	28
cov	11%	4%	6%
On-Highway	/ Diesel (I	EM-2677-F)	
# 1	11	19	26
# 2	19	23	26
# 3	17	23	28
Avg	16	22	27
COV	27%	11%	4%
Nonroad Hig	gh Sulfur	Diesel (EM	-2664-F)
# 1	11	21	25
# 2	15	20	25
# 3	14	19	23
Avg	13	20	24
COV	16%	5%	5%

updated 10/19/98 sgf

BNSF No. 9754 Test Summary

EPA Li	ne-Haul Duty	Cycle We	ighting Fa	ctors				EPA Sv	witcher Duty	Cycle Wei	ghting Fac	tors			
				EPA								EPA			
	obs bsfc	HC	CO	NOx	KH-NOx	PM	BNSF 9754		obs bsfc	HC	CO	NOx	KH-NOx	PM	
	lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	EMD SD70MAC		lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	
Carb D	iesel (EM-266	3-F)					updated 06-29-99	Carb D	iesel (EM-266	3-F)					
	0.349	0.32	2.6	11.728	11.481	0.34			0.414	0.49	2.06	12.012	11.764	0.35	
	0.345	0.32	1.8	11.912	11.849	0.34			0.410	0.53	1.67	12.173	12.117	0.33	
_	0.346	0.31	1.7	11.785	11.609	0.38		_	0.411	0.52	1.54	12.279	12.098	0.41	
Avg	0.347	0.317	2.04	11.808	11.646	0.356		Avg	0.412	0.512	1.76	12.155	11.993	0.360	
cov	0.5%	1.3%	23.7%	0.8%	1.6%	6.7%		cov	0.6%	4.5%	15.4%	1.1%	1.7%	11.2%	
On-Hig	hway Diesel ((EM-2677-	-F)					On-Hig	hway Diesel	(EM-2677-	F)				
	0.346	0.30	1.5	12.301	12.275	0.35			0.413	0.50	1.52	12.493	12.476	0.34	
	0.348	0.28	1.8	12.132	12.028	0.33			0.411	0.43	1.62	12.473	12.370	0.34	
	0.348	0.31	1.8	12.174	12.107	0.38			0.413	0.52	1.73	12.437	12.366	0.37	
	0.349	0.31	2.0	12.111	12.012	0.35			0.412	0.52	1.77	12.552	12.442	0.34	
Avg	0.348	0.303	1.80	12.179	12.106	0.353		Avg	0.412	0.493	1.66	12.489	12.413	0.347	
cov	0.4%	5.5%	11.1%	0.7%	1.0%	6.0%		cov	0.2%	8.5%	6.8%	0.4%	0.4%	4.6%	
Nonroa	d High Sulfu	r Diesel (E	EM-2664-F))				Nonroa	d High Sulfu	r Diesel (E	EM-2664-F))			
	0.354	0.29	2.4	12.277	12.072	0.37			0.420	0.48	1.88	12.588	12.369	0.39	
	0.350	0.32	1.6	12.096	11.995	0.41			0.417	0.54	1.57	12.535	12.428	0.41	
	0.351	0.31	1.9	12.458	12.274	0.40			0.418	0.50	1.77	12.635	12.431	0.39	
	0.351	0.35	1.9	12.440	12.299	0.43			0.417	0.57	1.88	12.601	12.442	0.44	
Avg	0.351	0.318	1.95	12.318	12.160	0.404		Avg	0.418	0.521	1.77	12.590	12.417	0.407	
cov	0.5%	7.1%	16.5%	1.4%	1.2%	6.6%		cov	0.3%	7.4%	8.2%	0.3%	0.3%	5.1%	
	-1.3%	-0%	5%	-4%	-4%	-12%	carb vs HS		-1.5%	-2%	-1%	-3%	-3%	-12%	carb vs HS
	-1.0%	-5%	-7%	-1%	-0%	-13%	on-hwy vs HS		-1.4%	-5%	-7%	-1%	-0%	-15%	on-hwy vs HS
	-0.3%	5%	14%	-3%	-4%	1%	carb vs on-hwy		-0.1%	4%	6%	-3%	-3%	4%	carb vs on-hwy

BNSF No. 9754 Test Results Using CARB Diesel Fuel

BNSF #9754 Test Date 10-5-98 CARB Diesel Fuel EM-2663-F Run #1/3

SwRI Proj	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.4	135	268	1,136	1,108	52	DB-2	12.5%	2.4	5.9	16.9	33.5	142.0	138.6	6.5
Low Idle	14	28.2	74	116	735	717	20	Low Idle	19.0%	2.6	5.4	14.1	22.0	139.7	136.2	3.8
Idle	19	47.4	135	268	1,136	1,108	52	Idle	19.0%	3.6	9.0	25.7	50.9	215.8	210.6	9.9
N1	205	92.4	137	290	2,226	2,178	58	N1	6.5%	13.3	6.0	8.9	18.9	144.7	141.6	3.8
N2	438	171.0	184	421	4,534	4,443	101	N2	6.5%	28.4	11.1	12.0	27.4	294.7	288.8	6.6
N3	979	353.0	297	570	10,078	9,884	290	N3	5.2%	50.9	18.4	15.4	29.6	524.1	514.0	15.1
N4	1,515	532.0	394	1,511	16,644	16,324	462	N4	4.4%	66.7	23.4	17.3	66.5	732.3	718.2	20.3
N5	2,006	696.0	500	4,064	21,238	20,813	567	N5	3.8%	76.2	26.4	19.0	154.4	807.0	790.9	21.5
N6	2,880	978.0	758	12,787	30,818	30,203	958	N6	3.9%	112.3	38.1	29.6	498.7	1201.9	1177.9	37.4
N7	3,653	1,190.4	962	10,229	44,010	43,103	1,185	N7	3.0%	109.6	35.7	28.9	306.9	1320.3	1293.1	35.6
N8	4,208	1,363.2	1,094	10,967	48,998	47,943	1,447	N8	16.2%	681.7	220.8	177.2	1776.7	7937.7	7766.8	234.4
							sum =	TOTAL	100.0%	1147.7	400.3	364.9	2985.4	13460.2	13176.7	394.8
							EPA line-haul o	luty cycle weighted br	ake-specific emi	ssions	0.349	0.32	2.6	11.7	11.5	0.34
							EPA line-haul o	uty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual	Notch brake	e-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.495	7.11	14.11	59.79	58.34	2.74	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.089	5.48	8.59	54.44	53.12	1.48	Low Idle	29.9%	4.0	8.4	22.1	34.7	219.8	214.4	6.0
Idle		2.495	7.11	14.11	59.79	58.34	2.74	Idle	29.9%	5.7	14.2	40.4	80.1	339.7	331.4	15.5
N1		0.451	0.67	1.42	10.87	10.64	0.28	N1	12.4%	25.4	11.5	17.0	36.0	276.0	270.1	7.2
N2		0.391	0.42	0.96	10.36	10.16	0.23	N2	12.3%	53.8	21.0	22.6	51.8	557.7	546.5	12.4
N3		0.360	0.30	0.58	10.29	10.09	0.30	N3	5.8%	56.8	20.5	17.2	33.1	584.5	573.3	16.8
N4		0.351	0.26	1.00	10.99	10.77	0.30	N4	3.6%	54.5	19.2	14.2	54.4	599.2	587.7	16.6
N5																20.4
		0.347	0.25	2.03	10.59	10.38	0.28	N5	3.6%	72.2	25.1	18.0	146.3	764.6	749.3	20.4
N6		0.347 0.340	0.25 0.26	2.03 4.44	10.59 10.70	10.38 10.49	0.28 0.33	N5 N6	3.6% 1.5%	72.2 43.2	25.1 14.7	18.0 11.4	146.3 191.8	764.6 462.3	749.3 453.0	14.4
N6 N7																
		0.340	0.26	4.44	10.70	10.49	0.33	N6	1.5%	43.2	14.7	11.4	191.8	462.3	453.0	14.4
N7		0.340 0.326	0.26 0.26	4.44 2.80	10.70 12.05	10.49 11.80	0.33 0.32	N6 N7	1.5% 0.2%	43.2 7.3	14.7 2.4	11.4 1.9	191.8 20.5	462.3 88.0	453.0 86.2	14.4 2.4
N7		0.340 0.326	0.26 0.26	4.44 2.80	10.70 12.05	10.49 11.80	0.33 0.32 0.34	N6 N7 N8	1.5% 0.2% 0.8% 100.0%	43.2 7.3 33.7 356.6	14.7 2.4 10.9	11.4 1.9 8.8	191.8 20.5 87.7	462.3 88.0 392.0	453.0 86.2 383.5	14.4 2.4 11.6

BNSF #9754 Test Date 10-6-98 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	46.8	152	312	1,086	1,082	37	DB-2	12.5%	2.4	5.9	19.0	39.0	135.8	135.2	4.6
Low Idle	14	27.6	89	164	820	818	16	Low Idle	19.0%	2.6	5.2	16.9	31.2	155.8	155.4	3.0
Idle	19	46.8	152	312	1,086	1,082	37	Idle	19.0%	3.6	8.9	28.9	59.3	206.3	205.6	7.0
N1	205	91.2	146	306	2,248	2,239	53	N1	6.5%	13.3	5.9	9.5	19.9	146.1	145.5	3.4
N2	438	170.0	205	425	4,532	4,513	103	N2	6.5%	28.5	11.1	13.3	27.6	294.6	293.3	6.7
N3	980	351.0	313	577	10,173	10,124	310	N3	5.2%	50.9	18.3	16.3	30.0	529.0	526.5	16.1
N4	1,515	526.0	404	1,082	16,924	16,843	455	N4	4.4%	66.7	23.1	17.8	47.6	744.7	741.1	20.0
N5	2,002	688.0	551	2,720	21,916	21,811	559	N5	3.8%	76.1	26.1	20.9	103.4	832.8	828.8	21.2
N6	2,881	963.0	770	8,058	30,524	30,357	900	N6	3.9%	112.3	37.6	30.0	314.3	1190.4	1183.9	35.1
N7	3,651	1,178.0	978	7,008	44,847	44,602	1,201	N7	3.0%	109.5	35.3	29.3	210.2	1345.4	1338.1	36.0
N8	4,203	1,349.0	1,027	7,195	49,880	49,607	1,460	N8	16.2%	681.0	218.5	166.4	1165.6	8080.6	8036.4	236.5
	,	,	ŕ	,	,	,	sum =	TOTAL	100.0%	1146.9	395.9	368.3	2048.0	13661.5	13589.8	389.9
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.345	0.32	1.8	11.9	11.8	0.34
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.450	7.96	16.34	56.86	56.65	1.94	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.044	6.59	12.15	60.74	60.57	1.19	Low Idle	29.9%	4.0	8.3	26.6	49.0	245.2	244.5	4.8
Idle		2.450	7.96	16.34	56.86	56.65	1.94	Idle	29.9%	5.7	14.0	45.4	93.3	324.7	323.5	11.1
N1		0.446	0.71	1.50	10.99	10.94	0.26	N1	12.4%	25.4	11.3	18.1	37.9	278.8	277.6	6.6
N2		0.388	0.47	0.97	10.34	10.30	0.23	N2	12.3%	53.9	20.9	25.2	52.3	557.4	555.1	12.7
N3		0.358	0.32	0.59	10.38	10.33	0.32	N3	5.8%	56.8	20.4	18.2	33.5	590.0	587.2	18.0
N4		0.347	0.27	0.71	11.17	11.12	0.30	N4	3.6%	54.5	18.9	14.5	39.0	609.3	606.3	16.4
N5		0.344	0.28	1.36	10.95	10.89	0.28	N5	3.6%	72.1	24.8	19.8	97.9	789.0	785.2	20.1
N6		0.334	0.27	2.80	10.60	10.54	0.31	N6	1.5%	43.2	14.4	11.6	120.9	457.9	455.4	13.5
N7		0.323	0.27	1.92	12.28	12.22	0.33	N7	0.2%	7.3	2.4	2.0	14.0	89.7	89.2	2.4
N8		0.321	0.24	1.71	11.87	11.80	0.35	N8	0.8%	33.6	10.8	8.2	57.6	399.0	396.9	11.7
								TOTAL	100.0%	356.6	146.1	189.6	595.3	4341.0	4320.8	117.2
							EPA switch du	ty cycle weighted bra	ke-specific emis	sions	0.410	0.53	1.67	12.17	12.12	0.33
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF #9754 Test Date 10-7-98 CARB Diesel Fuel EM-2663-F Run #3/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	20	48.8	145	359	1,152	1,137	67	DB-2	12.5%	2.4	6.1	18.1	44.9	144.0	142.1	8.4
Low Idle	14	26.8	84	143	792	780	18	Low Idle	19.0%	2.6	5.1	16.0	27.2	150.5	148.1	3.4
Idle	20	48.8	145	359	1,152	1,137	67	Idle	19.0%	3.7	9.3	27.6	68.2	218.9	216.1	12.7
N1	205	91.2	142	286	2,253	2,220	91	N1	6.5%	13.3	5.9	9.2	18.6	146.4	144.3	5.9
N2	438	169.8	194	424	4,570	4,504	134	N2	6.5%	28.5	11.0	12.6	27.6	297.1	292.8	8.7
N3	980	351.2	342	355	10,346	10,222	385	N3	5.2%	50.9	18.3	17.8	18.5	538.0	531.5	20.0
N4	1,515	526.4	415	1,014	16,875	16,617	469	N4	4.4%	66.7	23.2	18.3	44.6	742.5	731.2	20.6
N5	2,006	687.7	524	2,075	22,532	22,177	601	N5	3.8%	76.2	26.1	19.9	78.9	856.2	842.7	22.8
N6	2,885	964.8	768	7,359	30,782	30,260	1,017	N6	3.9%	112.5	37.6	30.0	287.0	1200.5	1180.2	39.7
N7	3,654	1,179.8	981	5,671	44,867	44,130	1,337	N7	3.0%	109.6	35.4	29.4	170.1	1346.0	1323.9	40.1
N8	4,212	1,354.0	992	7,507	48,748	48,036	1,591	N8	16.2%	682.3	219.3	160.7	1216.1	7897.2	7781.8	257.7
							sum =	TOTAL	100.0%	1148.7	397.4	359.5	2001.6	13537.2	13334.7	440.2
							EPA line-haul duty	y cycle weighted bi	rake-specific emis	sions	0.346	0.31	1.7	11.8	11.6	0.38
							EPA line-haul duty	y cycle maximum T	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle							
Individual	Notch brake	-specific em	issions					E	PA Switch Cycle			Weighted R	esults			
	Notch brake	bsfc	НС	со	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.503	HC (g/hp-hr) 7.44	(g/hp-hr) 18.41	(g/hp-hr) 59.08	(g/hp-hr) 58.32	(g/hp-hr) 3.44	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.503 1.985	HC (g/hp-hr) 7.44 6.22	(g/hp-hr) 18.41 10.59	(g/hp-hr) 59.08 58.67	(g/hp-hr) 58.32 57.75	(g/hp-hr) 3.44 1.33	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 8.0	w-HC w-(g/hr) 0.0 25.1	w-CO w-(g/hr) 0.0 42.8	w-(g/hr) 0.0 236.8	w-(g/hr) 0.0 233.1	w-(g/hr) 0.0 5.4
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503	HC (g/hp-hr) 7.44 6.22 7.44	(g/hp-hr) 18.41 10.59 18.41	(g/hp-hr) 59.08 58.67 59.08	(g/hp-hr) 58.32 57.75 58.32	(g/hp-hr) 3.44 1.33 3.44	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6	w-HC w-(g/hr) 0.0 25.1 43.4	w-CO w-(g/hr) 0.0 42.8 107.3	w-(g/hr) 0.0 236.8 344.4	w-(g/hr) 0.0 233.1 340.0	w-(g/hr) 0.0 5.4 20.0
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446	HC (g/hp-hr) 7.44 6.22 7.44 0.69	(g/hp-hr) 18.41 10.59 18.41 1.40	(g/hp-hr) 59.08 58.67 59.08 11.01	(g/hp-hr) 58.32 57.75 58.32 10.85	(g/hp-hr) 3.44 1.33 3.44 0.44	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3	w-HC w-(g/hr) 0.0 25.1 43.4 17.6	w-CO w-(g/hr) 0.0 42.8 107.3 35.5	w-(g/hr) 0.0 236.8 344.4 279.4	w-(g/hr) 0.0 233.1 340.0 275.3	w-(g/hr) 0.0 5.4 20.0 11.3
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.8 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2	w-(g/hr) 0.0 236.8 344.4 279.4 562.1	w-(g/hr) 0.0 233.1 340.0 275.3 554.0	w-(g/hr) 0.0 5.4 20.0 11.3 16.5
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.8 25.4 53.8 56.8	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.8 25.4 53.8 56.8 54.5	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.343	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.99% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.343 0.334	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03 2.55	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23 10.67	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06 10.49	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2 43.3	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8 14.5	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9 11.5	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7 110.4	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2 461.7	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4 453.9	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6 15.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.334 0.323	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26 0.27 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03 2.55 1.55	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23 10.67 12.28	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06 10.49 12.08	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30 0.35 0.37	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2 43.3 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8 14.5 2.4	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9 11.5 2.0	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7 110.4 11.3	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2 461.7 89.7	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4 453.9 88.3	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6 15.3 2.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.343 0.334	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03 2.55	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23 10.67	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06 10.49	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2 43.3 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8 14.5 2.4	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9 11.5 2.0 7.9	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7 110.4 11.3 60.1	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2 461.7 89.7 390.0	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4 453.9 88.3 384.3	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6 15.3 2.7 12.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.334 0.323	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26 0.27 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03 2.55 1.55	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23 10.67 12.28	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06 10.49 12.08	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30 0.35 0.37	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2 43.3 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8 14.5 2.4	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9 11.5 2.0	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7 110.4 11.3	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2 461.7 89.7	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4 453.9 88.3	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6 15.3 2.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.503 1.985 2.503 0.446 0.388 0.358 0.347 0.334 0.323	HC (g/hp-hr) 7.44 6.22 7.44 0.69 0.44 0.35 0.27 0.26 0.27 0.27	(g/hp-hr) 18.41 10.59 18.41 1.40 0.97 0.36 0.67 1.03 2.55 1.55	(g/hp-hr) 59.08 58.67 59.08 11.01 10.44 10.56 11.14 11.23 10.67 12.28	(g/hp-hr) 58.32 57.75 58.32 10.85 10.29 10.43 10.97 11.06 10.49 12.08	(g/hp-hr) 3.44 1.33 3.44 0.44 0.31 0.39 0.31 0.30 0.35 0.37 0.38	Notch DB-2 Low Idle Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 4.0 5.8 25.4 53.8 56.8 54.5 72.2 43.3 7.3 33.7 356.9	w-bsfc w-(lb/hp-hr) 0.0 8.0 14.6 11.3 20.9 20.4 19.0 24.8 14.5 2.4	w-HC w-(g/hr) 0.0 25.1 43.4 17.6 23.9 19.8 14.9 18.9 11.5 2.0 7.9	w-CO w-(g/hr) 0.0 42.8 107.3 35.5 52.2 20.6 36.5 74.7 110.4 11.3 60.1	w-(g/hr) 0.0 236.8 344.4 279.4 562.1 600.1 607.5 811.2 461.7 89.7 390.0	w-(g/hr) 0.0 233.1 340.0 275.3 554.0 592.9 598.2 798.4 453.9 88.3 384.3	w-(g/hr) 0.0 5.4 20.0 11.3 16.5 22.3 16.9 21.6 15.3 2.7 12.7

BNSF No. 9754 Test Results Using On-Highway Diesel Fuel

BNSF #9754 Test Date 10-6-98 On-Highway Diesel Fuel EM-2677-F Run #1/4

			0 ,													
SwRI Proj	ect 08-2062	-001								Weighted Resu	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		EPA Line-Haul WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	47.4	137	308	1,193	1,191	43	DB-2	12.5%	2.4	5.9	17.1	38.5	149.1	148.9	5.4
Low Idle	14	28.2	86	149	881	880	21	Low Idle	19.0%	2.6	5.4	16.3	28.3	167.4	167.3	4.0
Idle	19	47.4	137	308	1,193	1,191	43	Idle	19.0%	3.6	9.0	26.0	58.5	226.7	226.3	8.2
N1	205	94.2	143	314	2,378	2,375	47	N1	6.5%	13.3	6.1	9.3	20.4	154.6	154.4	3.1
N2	438	171.0	189	430	4,464	4,458	103	N2	6.5%	28.5	11.1	12.3	28.0	290.2	289.7	6.7
N3	980	353.0	312	621	10.292	10.285	302	N3	5.2%	51.0	18.4	16.2	32.3	535.2	534.8	15.7
N4	1,515	528.9	374	1,042	17,121	17,095	466	N4	4.4%	66.7	23.3	16.5	45.8	753.3	752.2	20.5
N5	2.005	690.0	509	2,238	22,086	22.054	566	N5	3.8%	76.2	26.2	19.3	85.0	839.3	838.0	21.5
N6	2,883	962.4	736	6,587	32,046	31,996	896	N6	3.9%	112.4	37.5	28.7	256.9	1249.8	1247.9	34.9
N7	3,655	1,182.0	914	6,223	45,785	45,689	1,287	N7	3.0%	109.7	35.5	27.4	186.7	1373.6	1370.7	38.6
N8	4,210	1,353.6	968	5,982	51,768	51,639	1,532	N8	16.2%	682.0	219.3	156.8	969.1	8386.4	8365.5	248.2
	-,	1,000.0		-,	,	,	sum =	TOTAL	100.0%	1148.3	397.7	346.0	1749.5	14125.5	14095.7	406.7
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.346	0.30	1.5	12.3	12.3	0.35
								duty cycle maximum 1				1.00	5.0	9.5	9.5	0.60
								Е	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.469	7.14	16.04	62.14	62.04	2.24	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.089	6.37	11.04	65.26	65.22	1.56	Low Idle	29.9%	4.0	8.4	25.7	44.6	263.4	263.3	6.3
Idle		2.469	7.14	16.04	62.14	62.04	2.24	Idle	29.9%	5.7	14.2	41.0	92.1	356.7	356.2	12.9
N1		0.460	0.70	1.53	11.62	11.60	0.23	N1	12.4%	25.4	11.7	17.7	38.9	294.9	294.5	5.8
N2		0.390	0.43	0.98	10.18	10.17	0.23	N2	12.3%	53.9	21.0	23.2	52.9	549.1	548.3	12.7
N3		0.360	0.32	0.63	10.50	10.49	0.31	N3	5.8%	56.8	20.5	18.1	36.0	596.9	596.5	17.5
N4		0.349	0.25	0.69	11.30	11.28	0.31	N4	3.6%	54.6	19.0	13.5	37.5	616.4	615.4	16.8
N5		0.344	0.25	1.12	11.02	11.00	0.28	N5	3.6%	72.2	24.8	18.3	80.6	795.1	793.9	20.4
N6		0.334	0.26	2.28	11.12	11.10	0.31	N6	1.5%	43.2	14.4	11.0	98.8	480.7	479.9	13.4
N7		0.323	0.25	1.70	12.53	12.50	0.35	N7	0.2%	7.3	2.4	1.8	12.4	91.6	91.4	2.6
N8		0.322	0.23	1.42	12.30	12.27	0.36	N8	0.8%	33.7	10.8	7.7	47.9	414.1	413.1	12.3
								TOTAL	100.0%	356.9	147.3	178.2	541.7	4458.9	4452.6	120.6
							EPA switch du	ty cycle weighted brak	ke-specific emiss	sions	0.413	0.50	1.52	12.49	12.48	0.34
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF #9754 Test Date 10-08-98 On-Highway Diesel Fuel EM-2677-F Run #2/4

SwRI Proje	ect 08-2062	-001		•					EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	46.0	84	212	844	835	48	DB-2	12.5%	2.4	5.8	10.5	26.5	105.5	104.4	6.0
Low Idle	14	26.6	54	99	609	603	18	Low Idle	19.0%	2.6	5.1	10.3	18.8	115.7	114.7	3.4
Idle	19	46.0	84	212	844	835	48	Idle	19.0%	3.7	8.7	16.0	40.3	160.4	158.7	9.1
N1	205	92.4	125	299	2,339	2,317	60	N1	6.5%	13.3	6.0	8.1	19.4	152.0	150.6	3.9
N2	439	171.6	232	528	5,874	5,830	119	N2	6.5%	28.5	11.2	15.1	34.3	381.8	379.0	7.7
N3	980	352.8	318	586	10,545	10,458	315	N3	5.2%	50.9	18.3	16.5	30.5	548.3	543.8	16.4
N4	1,514	531.6	369	1,102	17,525	17,381	451	N4	4.4%	66.6	23.4	16.2	48.5	771.1	764.8	19.8
N5	2,004	692.4	483	2,606	22,022	21,850	552	N5	3.8%	76.1	26.3	18.4	99.0	836.8	830.3	21.0
N6	2,883	974.0	698	9,382	31,314	31,069	879	N6	3.9%	112.4	38.0	27.2	365.9	1221.2	1211.7	34.3
N7	3,657	1,189.2	867	7,604	44,836	44,400	1,127	N7	3.0%	109.7	35.7	26.0	228.1	1345.1	1332.0	33.8
N8	4,211	1,365.6	967	7,441	51,203	50,764	1,382	N8	16.2%	682.1	221.2	156.7	1205.4	8294.9	8223.8	223.9
	,	,		,	,	•	sum =	TOTAL	100.0%	1148.5	399.6	320.9	2116.8	13932.9	13813.7	379.4
							EPA line-haul du	ty cycle weighted bra	ake-specific emi	ssions	0.348	0.28	1.8	12.132	12.028	0.33
							EPA line-haul du	ty cycle maximum Ti	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.371	4.33	10.93	43.51	43.06	2.47	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.970	4.00	7.33	45.11	44.70	1.33	Low Idle	29.9%	4.0	8.0	16.1	29.6	182.1	180.4	5.4
Idle		2.371	4.33	10.93	43.51	43.06	2.47	Idle	29.9%	5.8	13.8	25.1	63.4	252.4	249.8	14.4
N1																7.4
		0.451	0.61	1.46	11.42	11.31	0.29	N1	12.4%	25.4	11.5	15.5	37.1	290.0	287.3	
N2		0.451 0.391	0.61 0.53	1.46 1.20	11.42 13.39	11.31 13.29	0.27		12.4% 12.3%	25.4 53.9	11.5 21.1	15.5 28.5	64.9	290.0 722.5	717.1	14.6
N2 N3							0.27 0.32	N1	12.4% 12.3% 5.8%	25.4	11.5		64.9 34.0		717.1 606.6	14.6 18.3
		0.391	0.53	1.20	13.39	13.29	0.27 0.32 0.30	N1 N2	12.4% 12.3% 5.8% 3.6%	25.4 53.9	11.5 21.1	28.5	64.9	722.5	717.1	14.6 18.3 16.2
N3		0.391 0.360	0.53 0.32	1.20 0.60	13.39 10.76	13.29 10.68	0.27 0.32	N1 N2 N3	12.4% 12.3% 5.8% 3.6% 3.6%	25.4 53.9 56.8 54.5 72.1	11.5 21.1 20.5	28.5 18.4	64.9 34.0	722.5 611.6	717.1 606.6	14.6 18.3 16.2 19.9
N3 N4		0.391 0.360 0.351	0.53 0.32 0.24	1.20 0.60 0.73	13.39 10.76 11.58	13.29 10.68 11.48	0.27 0.32 0.30	N1 N2 N3 N4	12.4% 12.3% 5.8% 3.6%	25.4 53.9 56.8 54.5	11.5 21.1 20.5 19.1	28.5 18.4 13.3	64.9 34.0 39.7	722.5 611.6 630.9	717.1 606.6 625.7	14.6 18.3 16.2
N3 N4 N5		0.391 0.360 0.351 0.346	0.53 0.32 0.24 0.24	1.20 0.60 0.73 1.30	13.39 10.76 11.58 10.99	13.29 10.68 11.48 10.90	0.27 0.32 0.30 0.28	N1 N2 N3 N4 N5	12.4% 12.3% 5.8% 3.6% 3.6%	25.4 53.9 56.8 54.5 72.1	11.5 21.1 20.5 19.1 24.9	28.5 18.4 13.3 17.4	64.9 34.0 39.7 93.8	722.5 611.6 630.9 792.8	717.1 606.6 625.7 786.6	14.6 18.3 16.2 19.9
N3 N4 N5 N6		0.391 0.360 0.351 0.346 0.338	0.53 0.32 0.24 0.24 0.24	1.20 0.60 0.73 1.30 3.25	13.39 10.76 11.58 10.99 10.86	13.29 10.68 11.48 10.90 10.78	0.27 0.32 0.30 0.28 0.30	N1 N2 N3 N4 N5 N6	12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	25.4 53.9 56.8 54.5 72.1 43.2	11.5 21.1 20.5 19.1 24.9 14.6	28.5 18.4 13.3 17.4 10.5	64.9 34.0 39.7 93.8 140.7	722.5 611.6 630.9 792.8 469.7	717.1 606.6 625.7 786.6 466.0	14.6 18.3 16.2 19.9 13.2
N3 N4 N5 N6 N7		0.391 0.360 0.351 0.346 0.338 0.325	0.53 0.32 0.24 0.24 0.24 0.24	1.20 0.60 0.73 1.30 3.25 2.08	13.39 10.76 11.58 10.99 10.86 12.26	13.29 10.68 11.48 10.90 10.78 12.14	0.27 0.32 0.30 0.28 0.30 0.31	N1 N2 N3 N4 N5 N6 N7	12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	25.4 53.9 56.8 54.5 72.1 43.2 7.3	11.5 21.1 20.5 19.1 24.9 14.6 2.4	28.5 18.4 13.3 17.4 10.5 1.7	64.9 34.0 39.7 93.8 140.7 15.2	722.5 611.6 630.9 792.8 469.7 89.7	717.1 606.6 625.7 786.6 466.0 88.8	14.6 18.3 16.2 19.9 13.2 2.3
N3 N4 N5 N6 N7		0.391 0.360 0.351 0.346 0.338 0.325	0.53 0.32 0.24 0.24 0.24 0.24	1.20 0.60 0.73 1.30 3.25 2.08	13.39 10.76 11.58 10.99 10.86 12.26	13.29 10.68 11.48 10.90 10.78 12.14	0.27 0.32 0.30 0.28 0.30 0.31 0.33	N1 N2 N3 N4 N5 N6 N7 N8	12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8% 100.0%	25.4 53.9 56.8 54.5 72.1 43.2 7.3 33.7 356.9	11.5 21.1 20.5 19.1 24.9 14.6 2.4 10.9	28.5 18.4 13.3 17.4 10.5 1.7 7.7	64.9 34.0 39.7 93.8 140.7 15.2 59.5	722.5 611.6 630.9 792.8 469.7 89.7 409.6	717.1 606.6 625.7 786.6 466.0 88.8 406.1	14.6 18.3 16.2 19.9 13.2 2.3 11.1

BNSF #9754 Test Date 10-09-98 On-Highway Diesel Fuel EM-2677-F Run #3/4

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.6	135	336	1,155	1,147	46	DB-2	12.5%	2.4	6.0	16.9	42.0	144.4	143.4	5.8
Low Idle	14	27.2	89	206	829	824	21	Low Idle	19.0%	2.6	5.2	16.9	39.1	157.5	156.6	4.0
Idle	19	47.6	135	336	1,155	1,147	46	Idle	19.0%	3.6	9.0	25.7	63.8	219.5	217.9	8.7
N1	205	92.7	142	302	2,276	2,263	66	N1	6.5%	13.3	6.0	9.2	19.6	147.9	147.1	4.3
N2	438	171.0	207	447	4,579	4,556	128	N2	6.5%	28.5	11.1	13.5	29.1	297.6	296.1	8.3
N3	980	353.4	319	608	10,471	10,420	354	N3	5.2%	50.9	18.4	16.6	31.6	544.5	541.8	18.4
N4	1,515	530.5	401	1,078	17,216	17,125	468	N4	4.4%	66.7	23.3	17.6	47.4	757.5	753.5	20.6
N5	2,004	691.8	538	2,409	22,199	22,050	562	N5	3.8%	76.2	26.3	20.4	91.5	843.6	837.9	21.4
N6	2,883	967.7	802	8,525	31,525	31,335	977	N6	3.9%	112.4	37.7	31.3	332.5	1229.5	1222.1	38.1
N7	3,657	1,190.0	930	7,642	44,453	44,226	1,346	N7	3.0%	109.7	35.7	27.9	229.3	1333.6	1326.8	40.4
N8	4,211	1,361.0	1,020	7,270	51,275	50,999	1,652	N8	16.2%	682.2	220.5	165.2	1177.7	8306.6	8261.9	267.6
							sum =	TOTAL	100.0%	1148.5	399.2	361.2	2103.7	13982.1	13905.2	437.6
							EPA line-haul d	uty cycle weighted br	rake-specific em	issions	0.348	0.31	1.8	12.2	12.1	0.38
							EPA line-haul d	uty cycle maximum T	Tier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	Ef	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake	bsfc	HC					Ef Notch	,			w-HC	w-CO			
	Notch brake	•		CO (g/hp-hr) 17.50	Corr. NOx (g/hp-hr) 60.16	KH-NOx (g/hp-hr) 59.74	PM (g/hp-hr) 2.40		EPA		w-bsfc	Ü		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.479	HC (g/hp-hr) 7.03	(g/hp-hr) 17.50	(g/hp-hr) 60.16	(g/hp-hr) 59.74	(g/hp-hr) 2.40	Notch DB-2	EPA WF 0.0%	w-BHP	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.479 2.015	HC (g/hp-hr) 7.03 6.59	(g/hp-hr) 17.50 15.26	(g/hp-hr) 60.16 61.41	(g/hp-hr) 59.74 61.07	(g/hp-hr) 2.40 1.56	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 8.1	w-HC w-(g/hr) 0.0 26.6	w-CO w-(g/hr) 0.0 61.6	w-(g/hr) 0.0 247.9	w-(g/hr) 0.0 246.5	w-(g/hr) 0.0 6.3
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479	HC (g/hp-hr) 7.03 6.59 7.03	(g/hp-hr) 17.50 15.26 17.50	(g/hp-hr) 60.16 61.41 60.16	(g/hp-hr) 59.74 61.07 59.74	(g/hp-hr) 2.40 1.56 2.40	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	w-BHP 0.0 4.0 5.7	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2	w-HC w-(g/hr) 0.0 26.6 40.4	w-CO w-(g/hr) 0.0 61.6 100.5	w-(g/hr) 0.0 247.9 345.3	w-(g/hr) 0.0 246.5 342.9	w-(g/hr) 0.0 6.3 13.8
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453	HC (g/hp-hr) 7.03 6.59 7.03 0.69	(g/hp-hr) 17.50 15.26 17.50 1.47	(g/hp-hr) 60.16 61.41 60.16 11.11	(g/hp-hr) 59.74 61.07 59.74 11.05	(g/hp-hr) 2.40 1.56 2.40 0.32	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4%	w-BHP 0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5	w-HC w-(g/hr) 0.0 26.6 40.4 17.6	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3	w-(g/hr) 0.0 247.9 345.3 282.2	w-(g/hr) 0.0 246.5 342.9 280.6	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345 0.336	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27 0.28	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20 2.96	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08 10.94	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00 10.87	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1 43.2	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9 14.5	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4 12.0	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7 127.9	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2 472.9	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8 470.0	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2 14.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345 0.325	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27 0.28 0.25	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20 2.96 2.09	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08 10.94 12.15	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00 10.87 12.09	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28 0.34 0.37	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9 14.5 2.4	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4 12.0 1.9	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7 127.9 15.3	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2 472.9 88.9	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8 470.0 88.5	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2 14.7 2.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345 0.336	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27 0.28	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20 2.96	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08 10.94	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00 10.87	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1 43.2 7.3 33.7	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9 14.5 2.4 10.9	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4 12.0 1.9 8.2	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7 127.9 15.3 58.2	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2 472.9 88.9 410.2	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8 470.0 88.5 408.0	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2 14.7 2.7 13.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345 0.325	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27 0.28 0.25	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20 2.96 2.09	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08 10.94 12.15	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00 10.87 12.09	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28 0.34 0.37	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9 14.5 2.4	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4 12.0 1.9	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7 127.9 15.3	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2 472.9 88.9	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8 470.0 88.5	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2 14.7 2.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.479 2.015 2.479 0.453 0.391 0.361 0.350 0.345 0.325	HC (g/hp-hr) 7.03 6.59 7.03 0.69 0.47 0.33 0.26 0.27 0.28 0.25	(g/hp-hr) 17.50 15.26 17.50 1.47 1.02 0.62 0.71 1.20 2.96 2.09	(g/hp-hr) 60.16 61.41 60.16 11.11 10.46 10.69 11.37 11.08 10.94 12.15	(g/hp-hr) 59.74 61.07 59.74 11.05 10.41 10.63 11.31 11.00 10.87 12.09	(g/hp-hr) 2.40 1.56 2.40 0.32 0.29 0.36 0.31 0.28 0.34 0.37 0.39	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.7 25.4 53.8 56.8 54.5 72.1 43.2 7.3 33.7 356.8	w-bsfc w-(lb/hp-hr) 0.0 8.1 14.2 11.5 21.0 20.5 19.1 24.9 14.5 2.4 10.9	w-HC w-(g/hr) 0.0 26.6 40.4 17.6 25.5 18.5 14.4 19.4 12.0 1.9 8.2	w-CO w-(g/hr) 0.0 61.6 100.5 37.4 55.0 35.3 38.8 86.7 127.9 15.3 58.2	w-(g/hr) 0.0 247.9 345.3 282.2 563.2 607.3 619.8 799.2 472.9 88.9 410.2	w-(g/hr) 0.0 246.5 342.9 280.6 560.4 604.4 616.5 793.8 470.0 88.5 408.0	w-(g/hr) 0.0 6.3 13.8 8.2 15.7 20.5 16.8 20.2 14.7 2.7 13.2

BNSF #9754 Test Date 10-12-98 On-Highway Diesel Fuel EM-2677-F Run #4/4

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.3	154	293	1,214	1,204	42	DB-2	12.5%	2.4	5.9	19.3	36.6	151.8	150.5	5.3
Low Idle	14	25.3	85	137	849	840	20	Low Idle	19.0%	2.6	4.8	16.2	26.0	161.3	159.5	3.8
Idle	19	47.3	154	293	1,214	1,204	42	Idle	19.0%	3.7	9.0	29.3	55.7	230.7	228.7	8.0
N1	205	91.3	141	284	2,312	2,293	51	N1	6.5%	13.3	5.9	9.2	18.5	150.3	149.0	3.3
N2	439	171.4	204	410	4,567	4,524	103	N2	6.5%	28.5	11.1	13.3	26.7	296.9	294.1	6.7
N3	980	354.0	305	568	10,497	10,410	297	N3	5.2%	51.0	18.4	15.9	29.5	545.8	541.3	15.4
N4	1,513	532.5	414	1,187	17,243	17,072	465	N4	4.4%	66.6	23.4	18.2	52.2	758.7	751.2	20.5
N5	2,005	696.0	530	2,896	22,076	21,894	561	N5	3.8%	76.2	26.4	20.1	110.0	838.9	832.0	21.3
N6	2,883	979.7	773	10,389	33,240	32,965	919	N6	3.9%	112.4	38.2	30.1	405.2	1296.4	1285.7	35.8
N7	3,654	1,196.0	934	8,879	45,264	44,812	1,228	N7	3.0%	109.6	35.9	28.0	266.4	1357.9	1344.4	36.8
N8	4,208	1,369.2	1,000	7,846	50,093	49,713	1,490	N8	16.2%	681.7	221.8	162.0	1271.1	8115.1	8053.5	241.4
							sum =	TOTAL	100.0%	1148.0	401.0	361.5	2297.8	13903.6	13789.7	398.3
							FPA line-haul du	ity cycle weighted br	ake-specific emis	ssions	0.349	0.31	2.0	12.111	12.012	0.35
								ity cycle maximum T			0.0.0	1.00	5.0	9.5	9.5	0.60
									A Switch Cycle							
Individual	Notch brake	e-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual	Notch brake	•		CO	Corr NOx	KH-NOv	PM	EF	•	w-RHP		Ü		w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC	CO	Corr. NOx	KH-NOx	PM (g/hn-hr)		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(a/hr)
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.451	HC (g/hp-hr) 7.98	(g/hp-hr) 15.18	(g/hp-hr) 62.90	(g/hp-hr) 62.36	(g/hp-hr) 2.18	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr) 2.18 1.48	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr) 0.0 253.9	w-(g/hr) 0.0 251.0	w-(g/hr)
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.451 1.874	HC (g/hp-hr) 7.98 6.30	(g/hp-hr) 15.18 10.15	(g/hp-hr) 62.90 62.89	(g/hp-hr) 62.36 62.19	(g/hp-hr) 2.18	Notch DB-2	EPA WF 0.0%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.6	w-HC w-(g/hr) 0.0 25.4	w-CO w-(g/hr) 0.0 41.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0 6.0
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451	HC (g/hp-hr) 7.98 6.30 7.98	(g/hp-hr) 15.18 10.15 15.18	(g/hp-hr) 62.90 62.89 62.90	(g/hp-hr) 62.36 62.19 62.36	(g/hp-hr) 2.18 1.48 2.18	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.8	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1	w-HC w-(g/hr) 0.0 25.4 46.0	w-CO w-(g/hr) 0.0 41.0 87.6	w-(g/hr) 0.0 253.9 363.0	w-(g/hr) 0.0 251.0 359.9	w-(g/hr) 0.0 6.0 12.6
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446	HC (g/hp-hr) 7.98 6.30 7.98 0.69	(g/hp-hr) 15.18 10.15 15.18 1.39	(g/hp-hr) 62.90 62.89 62.90 11.29	(g/hp-hr) 62.36 62.19 62.36 11.20	(g/hp-hr) 2.18 1.48 2.18 0.25	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.8 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3	w-HC w-(g/hr) 0.0 25.4 46.0 17.5	w-CO w-(g/hr) 0.0 41.0 87.6 35.2	w-(g/hr) 0.0 253.9 363.0 286.7	w-(g/hr) 0.0 251.0 359.9 284.3	w-(g/hr) 0.0 6.0 12.6 6.3
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.8 25.4 53.9	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4	w-(g/hr) 0.0 253.9 363.0 286.7 561.7	w-(g/hr) 0.0 251.0 359.9 284.3 556.5	w-(g/hr) 0.0 6.0 12.6 6.3 12.7
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.8 25.4 53.9 56.9	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.8 25.4 53.9 56.9 54.5	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352 0.347	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27 0.26	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78 1.44	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39 11.01	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28 10.92	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31 0.28	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.8 25.4 53.9 56.9 54.5 72.2	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2 25.1	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9 19.1	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7 104.3 155.8 17.8	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7 794.7	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6 788.2	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7 20.2 13.8 2.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352 0.347 0.340	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27 0.26 0.27	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78 1.44 3.60	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39 11.01 11.53	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28 10.92 11.44	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31 0.28 0.32	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.8 25.4 53.9 56.9 54.5 72.2 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2 25.1 14.7	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9 19.1 11.6	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7 104.3 155.8	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7 794.7 498.6	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6 788.2 494.5	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7 20.2 13.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352 0.347 0.340 0.327	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27 0.26 0.27 0.26	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78 1.44 3.60 2.43	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39 11.01 11.53 12.39	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28 10.92 11.44 12.26	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31 0.28 0.32 0.34	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.8 25.4 53.9 56.9 54.5 72.2 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2 25.1 14.7 2.4	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9 19.1 11.6 1.9	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7 104.3 155.8 17.8	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7 794.7 498.6 90.5	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6 788.2 494.5 89.6	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7 20.2 13.8 2.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352 0.347 0.340 0.327	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27 0.26 0.27 0.26	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78 1.44 3.60 2.43	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39 11.01 11.53 12.39	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28 10.92 11.44 12.26	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31 0.28 0.32 0.34 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 4.0 5.8 25.4 53.9 56.9 54.5 72.2 43.2 7.3 33.7 356.9	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2 25.1 14.7 2.4 11.0 146.9	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9 19.1 11.6 1.9 8.0 187.2	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7 104.3 155.8 17.8 62.8 630.5	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7 794.7 498.6 90.5 400.7	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6 788.2 494.5 89.6 397.7 4440.0	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7 20.2 13.8 2.5 11.9 119.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.451 1.874 2.451 0.446 0.391 0.361 0.352 0.347 0.340 0.327	HC (g/hp-hr) 7.98 6.30 7.98 0.69 0.47 0.31 0.27 0.26 0.27 0.26	(g/hp-hr) 15.18 10.15 15.18 1.39 0.94 0.58 0.78 1.44 3.60 2.43	(g/hp-hr) 62.90 62.89 62.90 11.29 10.42 10.71 11.39 11.01 11.53 12.39	(g/hp-hr) 62.36 62.19 62.36 11.20 10.32 10.62 11.28 10.92 11.44 12.26	(g/hp-hr) 2.18 1.48 2.18 0.25 0.23 0.30 0.31 0.28 0.32 0.34 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 4.0 5.8 25.4 53.9 56.9 54.5 72.2 43.2 7.3 33.7 356.9	w-bsfc w-(lb/hp-hr) 0.0 7.6 14.1 11.3 21.1 20.5 19.2 25.1 14.7 2.4	w-HC w-(g/hr) 0.0 25.4 46.0 17.5 25.1 17.7 14.9 19.1 11.6 1.9 8.0	w-CO w-(g/hr) 0.0 41.0 87.6 35.2 50.4 32.9 42.7 104.3 155.8 17.8 62.8	w-(g/hr) 0.0 253.9 363.0 286.7 561.7 608.8 620.7 794.7 498.6 90.5 400.7	w-(g/hr) 0.0 251.0 359.9 284.3 556.5 603.8 614.6 788.2 494.5 89.6 397.7	w-(g/hr) 0.0 6.0 12.6 6.3 12.7 17.2 16.7 20.2 13.8 2.5 11.9

BNSF No. 9754 Test Results Using High-Sulfur Diesel Fuel

BNSF #9754 Test Date 10-5-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/4

SwRI Proje	ect 08-2062-	-001								Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2 Low Idle Idle N1 N2 N3 N4 N5	19 14 19 205 438 980 1,514 2,003	48.0 27.6 48.0 93.0 173.0 360.0 541.0 709.2	137 78 137 136 196 296 383 430	256 119 256 195 472 648 1,731 3.065	1,220 888 1,220 2,357 4,696 10,497 16,903 21,965	1,197 871 1,197 2,316 4,618 10,320 16,613 21,573	45 20 45 55 116 315 525 801	DB-2 Low Idle Idle N1 N2 N3 N4 N5	12.5% 19.0% 19.0% 6.5% 6.5% 5.2% 4.4% 3.8%	2.4 2.6 3.6 13.3 28.5 51.0 66.6 76.1	6.0 5.2 9.1 6.0 11.2 18.7 23.8 26.9	17.1 14.8 26.0 8.8 12.7 15.4 16.9 16.3	32.0 22.6 48.6 12.7 30.7 33.7 76.2 116.5	152.5 168.7 231.8 153.2 305.2 545.8 743.7 834.7	149.7 165.5 227.5 150.5 300.1 536.6 731.0 819.8	5.6 3.8 8.6 3.6 7.5 16.4 23.1 30.4
N6 N7 N8	2,866 3,651 4,229	994.8 1,208.4 1,386.0	607 872 989	10,899 10,537 10,140	31,749 45,457 51,769	31,182 44,744 50,917	1,247 1,284 1,488 sum =	N6 N7 N8 TOTAL	3.9% 3.0% 16.2% 100.0%	111.8 109.5 685.0 1150.4	38.8 36.3 224.5 406.7	23.7 26.2 160.2 338.2	425.1 316.1 1642.7 2756.8	1238.2 1363.7 8386.6 14124.2	1216.1 1342.3 8248.5 13887.7	48.6 38.5 241.1 427.2
								ity cycle weighted br ity cycle maximum T		ssions	0.354	0.29 1.00	2.4 5.0	12.3 9.5	12.1 9.5	0.37 0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
Individual Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	-specific em bsfc (lb/hp-hr) 2.500 2.044 2.500 0.454 0.395 0.367 0.357 0.354 0.347 0.331 0.328	HC (g/hp-hr) 7.14 5.78 7.14 0.66 0.45 0.30 0.25 0.21 0.21 0.24	CO (g/hp-hr) 13.33 8.81 13.33 0.95 1.08 0.66 1.14 1.53 3.80 2.89 2.40	Corr. NOx (g/hp-hr) 63.54 63.54 11.51 10.71 11.17 10.97 11.08 12.45 12.24	KH-NOx (g/hp-hr) 62.36 64.53 62.36 11.31 10.53 10.53 10.77 10.88 12.25 12.04	PM (g/hp-hr) 2.34 1.48 2.34 0.27 0.26 0.32 0.35 0.40 0.44 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.7 25.4 53.9 56.8 54.5 72.1 43.0 7.3 33.8 356.6	w-bsfc w-(lb/hp-hr) 0.0 8.3 14.4 11.5 21.3 20.9 19.5 25.5 14.9 2.4 11.1 149.7	Weighted R W-HC W-(g/hr) 0.0 23.3 41.0 16.9 24.1 17.2 13.8 15.5 9.1 1.7 7.9 170.5	w-CO w-(g/hr) 0.0 35.6 76.5 24.2 58.1 37.6 62.3 110.3 163.5 21.1 81.1 670.3	w-NOx w-(g/hr) 0.0 265.5 364.8 292.3 577.6 608.8 608.5 790.7 476.2 90.9 414.2 4489.5	w-KH-NOx w-(g/hr) 0.0 260.5 358.0 287.1 568.0 598.6 598.1 776.6 467.7 89.5 407.3	w-PM w-(g/hr) 0.0 6.0 13.5 6.8 14.3 18.9 28.8 18.7 2.6 11.9

BNSF #9754 Test Date 10-08-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/4

SwRI Proje	ect 08-2062	-001		9					EDA Line Head	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Hau WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	20	49.8	155	308	1,255	1,241	45	DB-2	12.5%	2.4	6.2	19.4	38.5	156.9	155.2	5.6
Low Idle	14	27.9	92	149	850	842	20	Low Idle	19.0%	2.6	5.3	17.5	28.3	161.5	159.9	3.8
Idle	20	49.8	155	308	1,255	1,241	45	Idle	19.0%	3.7	9.5	29.5	58.5	238.5	235.9	8.6
N1	205	93.3	153	309	2,374	2,353	75	N1	6.5%	13.3	6.1	9.9	20.1	154.3	153.0	4.9
N2	439	172.8	208	401	4,689	4,645	133	N2	6.5%	28.5	11.2	13.5	26.1	304.8	301.9	8.6
N3	980	356.3	343	538	10,412	10,343	397	N3	5.2%	50.9	18.5	17.8	28.0	541.4	537.8	20.6
N4	1,514	534.0	398	979	17,324	17,175	525	N4	4.4%	66.6	23.5	17.5	43.1	762.3	755.7	23.1
N5	2,006	694.8	501	2,181	21,844	21,656	681	N5	3.8%	76.2	26.4	19.0	82.9	830.1	822.9	25.9
N6	2,883	973.2	718	8,496	31,095	30,864	1,092	N6	3.9%	112.4	38.0	28.0	331.3	1212.7	1203.7	42.6
N7	3,654	1,189.8	977	7,158	45,236	44,887	1,491	N7	3.0%	109.6	35.7	29.3	214.7	1357.1	1346.6	44.7
N8	4,211	1,366.0	1,050	6,233	50,450	50,025	1,773	N8	16.2%	682.2	221.3	170.1	1009.7	8172.9	8104.0	287.2
	,	,	,	,	,	ŕ	sum =	TOTAL	100.0%	1148.5	401.7	371.6	1881.2	13892.4	13776.6	475.7
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.350	0.32	1.6	12.1	12.0	0.41
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	е						
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.554	7.95	15.79	64.36	63.66	2.31	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.067	6.81	11.04	62.96	62.35	1.48	Low Idle	29.9%	4.0	8.3	27.5	44.6	254.2	251.7	6.0
Idle		2.554	7.95	15.79	64.36	63.66	2.31	Idle	29.9%	5.8	14.9	46.3	92.1	375.2	371.2	13.5
N1		0.456	0.75	1.51	11.60	11.50	0.37	N1	12.4%	25.4	11.6	19.0	38.3	294.4	291.8	9.3
N2		0.394	0.47	0.91	10.69	10.59	0.30	N2	12.3%	54.0	21.3	25.6	49.3	576.7	571.3	16.4
N3		0.364	0.35	0.55	10.63	10.56	0.41	N3	5.8%	56.8	20.7	19.9	31.2	603.9	599.9	23.0
N4		0.353	0.26	0.65	11.44	11.34	0.35	N4	3.6%	54.5	19.2	14.3	35.2	623.7	618.3	18.9
N5		0.346	0.25	1.09	10.89	10.79	0.34	N5	3.6%	72.2	25.0	18.0	78.5	786.4	779.6	24.5
N6		0.338	0.25	2.95	10.79	10.71	0.38	N6	1.5%	43.2	14.6	10.8	127.4	466.4	463.0	16.4
N7		0.326	0.27	1.96	12.38	12.28	0.41	N7	0.2%	7.3	2.4	2.0	14.3	90.5	89.8	3.0
N8		0.324	0.25	1.48	11.98	11.88	0.42	N8	0.8%	33.7	10.9	8.4	49.9	403.6	400.2	14.2
								TOTAL	100.0%	357.0	148.9	191.8	560.9	4475.0	4436.6	145.1
							EPA switch du	uty cycle weighted bral	ke-specific emis	sions	0.417	0.54	1.57	12.53	12.43	0.41
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF #9754 Test Date 10-12-98 Nonroad High-Sulkfur Diesel Fuel EM-2664-F Run #3/4

SwRI Proj	ect 08-2062-	-001		-					EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	49.5	147	333	1,290	1,265	43	DB-2	12.5%	2.4	6.2	18.4	41.6	161.3	158.1	5.4
Low Idle	14	27.8	83	171	919	901	26	Low Idle	19.0%	2.6	5.3	15.8	32.5	174.6	171.2	4.9
Idle	19	49.5	147	333	1,290	1,265	43	Idle	19.0%	3.7	9.4	27.9	63.3	245.1	240.3	8.2
N1	205	93.1	133	312	2,320	2,278	59	N1	6.5%	13.3	6.1	8.6	20.3	150.8	148.1	3.8
N2	438	173.3	192	424	4,606	4,527	114	N2	6.5%	28.4	11.3	12.5	27.6	299.4	294.2	7.4
N3	980	356.4	309	607	10,318	10,143	342	N3	5.2%	50.9	18.5	16.1	31.6	536.5	527.4	17.8
N4	1,515	532.8	380	1,123	17,196	16,918	561	N4	4.4%	66.7	23.4	16.7	49.4	756.6	744.4	24.7
N5	2,004	699.6	495	2,634	21,793	21,507	697	N5	3.8%	76.2	26.6	18.8	100.1	828.1	817.2	26.5
N6	2,886	980.0	733	9,614	31,914	31,419	1,136	N6	3.9%	112.5	38.2	28.6	374.9	1244.6	1225.3	44.3
N7	3,657	1,198.0	924	8,028	45,395	44,756	1,431	N7	3.0%	109.7	35.9	27.7	240.8	1361.9	1342.7	42.9
N8	4,211	1,370.4	1,008	7,215	52,781	52,038	1,664	N8	16.2%	682.2	222.0	163.3	1168.8	8550.5	8430.1	269.6
	,	,	,	,	,	,	sum =	TOTAL	100.0%	1148.7	402.9	354.4	2150.9	14309.5	14099.1	455.5
							EPA line-haul dut	y cycle weighted br	ake-specific emis	ssions	0.351	0.31	1.9	12.5	12.3	0.40
								y cycle maximum T				1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions								,	Weighted R	esults			
		bsfc	HC	со	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.552	7.58	17.16	66.49	65.19	2.22	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.059	6.15	12.67	68.07	66.74	1.93	Low Idle	29.9%	4.0	8.3	24.8	51.1	274.8	269.4	7.8
Idle		2.552	7.58	17.16	66.49	65.19	2.22	Idle	29.9%	5.8	14.8	44.0	99.6	385.7	378.1	12.9
N1		0.455	0.65	1.52	11.34	11.14	0.29	N1	12.4%	25.4	11.5	16.5	38.7	287.7	282.5	7.3
N2		0.396	0.44	0.97	10.53	10.34	0.26	N2	12.3%	53.8	21.3	23.6	52.2	566.5	556.8	14.0
N3		0.364	0.32	0.62	10.53	10.35	0.35	N3	5.8%	56.8	20.7	17.9	35.2	598.4	588.3	19.8
N4		0.352	0.25	0.74	11.35	11.17	0.37	N4	3.6%	54.5	19.2	13.7	40.4	619.1	609.0	20.2
N5		0.349	0.25	1.31	10.87	10.73	0.35	N5	3.6%	72.1	25.2	17.8	94.8	784.5	774.2	25.1
N6		0.340	0.25	3.33	11.06	10.89	0.39	N6	1.5%	43.3	14.7	11.0	144.2	478.7	471.3	17.0
N7			0.05	0.00	12.41	12.24	0.39	N7	0.2%	7.3	2.4	1.8	16.1	90.8	89.5	2.9
IN/		0.328	0.25	2.20	12.41	12.24	0.55	IN/		7.0					00.0	
N8		0.328 0.325	0.25	2.20 1.71	12.41	12.24	0.40	N8	0.8%	33.7	11.0	8.1	57.7	422.2	416.3	13.3
							0.40	N8	0.8% 100.0%	33.7 356.8	11.0	8.1	57.7	422.2	416.3	13.3

BNSF #9754 Test Date 10-13-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #4/4

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	19 14 19 205 439 980 1,514 2,005 2,882 3,657 4,209	48.5 27.6 48.5 93.0 173.2 356.7 536.7 700.4 978.6 1,197.6 1,369.9	150 98 150 156 225 352 442 588 815 1,021 1,143	363 185 363 413 544 754 1,417 2,848 7,811 6,909 7,527	1,228 888 1,228 2,400 4,609 10,347 17,009 22,196 31,680 45,545 52,711	1,213 876 1,213 2,368 4,548 10,200 16,780 21,931 31,352 44,979 52,146	59 24 59 96 156 256 605 738 1,263 1,556 1,819 sum =	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	12.5% 19.0% 19.0% 6.5% 6.5% 5.2% 4.4% 3.8% 3.9% 3.0% 16.2%	2.4 2.6 3.7 13.3 28.5 50.9 66.6 76.2 112.4 109.7 681.8 1148.1	6.1 5.2 9.2 6.0 11.3 18.5 23.6 26.6 38.2 35.9 221.9 402.6	18.8 18.6 28.5 10.1 14.6 18.3 19.4 22.3 31.8 30.6 185.2 398.3	45.4 35.2 69.0 26.8 35.4 39.2 62.3 108.2 304.6 207.3 1219.4 2152.8	153.5 168.7 233.3 156.0 299.6 538.0 748.4 843.4 1235.5 1366.4 8539.2 14282.1	151.6 166.4 230.5 153.9 295.6 530.4 738.3 833.4 1222.7 1349.4 8447.7 14120.0	7.4 4.6 11.2 6.2 10.1 13.3 26.6 28.0 49.3 46.7 294.7
								ty cycle weighted br ty cycle maximum T		ssions	0.351	0.35 1.00	1.9 5.0	12.440 9.5	12.299 9.5	0.43 0.60
Individual N	Notch brake	-specific em	issions					Ef	PA Switch Cycle			Weighted R	esults			
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	Notch brake	bsfc (lb/hp-hr) 2.500 2.044 2.500 0.454 0.395 0.364 0.355 0.349 0.328 0.326	HC (g/hp-hr) 7.73 7.26 7.73 0.76 0.51 0.36 0.29 0.28 0.28 0.27	CO (g/hp-hr) 18.71 13.70 18.71 2.02 1.24 0.77 0.94 1.42 2.71 1.89 1.79	Corr. NOx (g/hp-hr) 63.30 65.78 63.30 11.72 10.51 10.56 11.24 11.07 10.99 12.46 12.52	KH-NOx (g/hp-hr) 62.54 64.88 62.54 11.56 10.37 10.41 11.09 10.94 10.88 12.30 12.39	PM (g/hp-hr) 3.04 1.78 3.04 0.47 0.36 0.26 0.40 0.37 0.44 0.43	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	w-BHP 0.0 4.0 5.8 25.4 53.9 56.8 54.5 72.2 43.2 7.3 33.7 356.9	w-bsfc w-(lb/hp-hr) 0.0 8.3 14.5 11.5 21.3 20.7 19.3 25.2 14.7 2.4 11.0 148.8	Weighted R w-HC w-(g/hr) 0.0 29.3 44.9 19.3 27.7 20.4 15.9 21.2 12.2 2.0 9.1 202.1	w-CO w-(g/hr) 0.0 55.3 108.5 51.2 66.9 43.7 51.0 102.5 117.2 13.8 60.2 670.4	w-NOx w-(g/hr) 0.0 265.5 367.2 297.6 566.9 600.1 612.3 799.1 475.2 91.1 421.7 4496.7	w-KH-NOx w-(g/hr) 0.0 261.9 362.7 293.7 559.3 591.6 604.1 789.5 470.3 90.0 417.2 4440.2	w-PM w-(g/hr) 0.0 7.2 17.6 11.9 19.2 14.8 26.6 18.9 3.1 14.6 155.7

BNSF No. 9754 Smoke Test Summary

SMOKE TEST SUMMARY FOR BNSF NO. 9754

Run #	ss	30-sec	3-sec
Carb Diese	el (EM-26	63-F)	
# 1 # 2 # 3 Avg cov	13 9 11 11 18%	17 10 15 14 26%	24 17 19 20 18%
On-Highwa	ay Diesel	(EM-2677-F	-)
# 1 # 2 # 3 # 4 Avg COV	7 12 11 13 11 24%	9 15 15 17 14 25%	19 17 16 22 19 14%
Nonroad H	ligh Sulfu	ır Diesel (El	M-2664-F)
# 1 # 2 # 3 # 4 Avg cov	15 10 11 11 12 19%	19 13 15 16 16 16%	27 18 20 22 22 18%

BNSF No. 9696 Test Summary

EPA Li	ne-Haul Duty	Cycle We	eighting Fa					EPA S	witcher Duty	Cycle Wei	ghting Fac				
	obs bsfc lb/hp-hr	HC g/hp-hr	CO g/hp-hr	EPA NOx g/hp-hr	KH-NOx g/hp-hr	PM g/hp-hr	BN 9696 EMD SD70MAC		obs bsfc lb/hp-hr	HC g/hp-hr	CO g/hp-hr	EPA NOx g/hp-hr	KH-NOx g/hp-hr	PM g/hp-hr	
Carb Di	iesel (EM-266		9···	3	3	9	updated 06-29-99	Carb D	iesel (EM-266		3	3	3···F····	3···P····	
	0.347	0.34	1.3	11.432	11.407	0.21			0.408	0.54	1.38	11.689	11.657	0.24	
	0.347	0.33	1.1	11.406	11.319	0.23			0.411	0.55	1.22	11.799	11.701	0.26	
	0.344	0.32	0.9	11.529	11.281	0.24			0.408	0.53	0.92	11.863	11.596	0.29	
Avg	0.346	0.331	1.10	11.455	11.336	0.226		Avg	0.409	0.542	1.17	11.784	11.651	0.263	
cov	0.5%	4.1%	17.1%	0.6%	0.6%	6.6%		cov	0.3%	1.5%	19.8%	0.7%	0.5%	8.8%	
On-Hig	hway Diesel	(EM-2677	-F)					On-Hig	hway Diesel	(EM-2677-	F)				
	0.349	0.34	1.0	12.091	11.970	0.27			0.411	0.54	1.13	12.521	12.365	0.33	
	0.349	0.36	1.0	12.036	11.907	0.26			0.413	0.59	1.18	12.314	12.198	0.30	
	0.352	0.32	1.3	11.948	11.814	0.23			0.416	0.54	1.37	12.306	12.163	0.26	
Avg	0.350	0.343	1.10	12.025	11.897	0.255		Avg	0.413	0.555	1.23	12.380	12.242	0.299	
cov	0.5%	4.9%	13.5%	0.6%	0.7%	7.6%		cov	0.7%	4.9%	10.3%	1.0%	0.9%	11.2%	
Nonroa	ıd High Sulfu	r Diesel (I	EM-2664-F))				Nonroa	ıd High Sulfu	r Diesel (E	EM-2664-F))			
	0.352	0.31	1.2	12.165	12.098	0.28			0.416	0.54	1.32	12.292	12.223	0.32	
	0.352	0.33	1.2	12.366	12.199	0.31			0.417	0.56	1.35	12.520	12.347	0.34	
	0.350	0.32	0.9	12.563	12.312	0.28			0.417	0.51	1.08	12.776	12.513	0.31	
Avg	0.351	0.323	1.09	12.365	12.203	0.291		Avg	0.417	0.534	1.25	12.529	12.361	0.324	
cov	0.2%	2.9%	12.2%	1.6%	0.9%	5.4%		cov	0.2%	4.8%	12.0%	1.9%	1.2%	4.4%	
	-1.4%	2%	1%	-7%	-7%	-22%	carb vs HS		-1.8%	2%	-6%	-6%	-6%	-19%	carb vs
	-0.4%	6%	1%	-3%	-3%	-12%	on-hwy vs HS		-0.8%	4%	-2%	-1%	-1%	-8%	on-hwy
	-0.9%	-3%	-0%	-5%	-5%	-11%	carb vs on-hwy		-1.0%	-2%	-5%	-5%	-5%	-12%	carb vs

BNSF No. 9696 Test Results Using CARB Diesel Fuel

BN #9696 Test Date 3-10-99 CARB Diesel Fuel EM-2663-F Run #1/3

	Test Date t															
SwRI Proje	ect 08-2062	-001								Neighted Res	ults					
									EPA Line-Haul							
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	45.0	168	120	1,045	1,038	27	DB-2	12.5%	2.4	5.6	21.0	15.0	130.6	129.8	3.4
Low Idle	13	24.5	105	57	756	752	12	Low Idle	19.0%	2.5	4.7	20.0	10.8	143.6	142.9	2.3
Idle	19	45.0	168	120	1,045	1,038	27	Idle	19.0%	3.6	8.6	31.9	22.8	198.6	197.3	5.1
N1	205	89.0	150	145	2,149	2,140	37	N1	6.5%	13.3	5.8	9.8	9.4	139.7	139.1	2.4
N2	438	169.0	197	220	4,208	4,197	84	N2	6.5%	28.4	11.0	12.8	14.3	273.5	272.8	5.5
N3	979	355.0	289	368	9,813	9,795	216	N3	5.2%	50.9	18.5	15.0	19.1	510.3	509.3	11.2
N4	1,519	539.0	379	1,868	15,933	15,889	348	N4	4.4%	66.8	23.7	16.7	82.2	701.1	699.1	15.3
N5	1,988	696.0	451	4,496	20,482	20,449	484	N5	3.8%	75.5	26.4	17.1	170.8	778.3	777.1	18.4
N6	2,880	960.0	718	6,427	32,772	32,711	562	N6	3.9%	112.3	37.4	28.0	250.7	1278.1	1275.7	21.9
N7	3,655	1,181.0	1,023	4,281	48,215	48,118	733	N7	3.0%	109.6	35.4	30.7	128.4	1446.5	1443.5	22.0
N8	4,173	1,355.0	1,169	4,493	45,985	45,894	817	N8	16.2%	676.0	219.5	189.4	727.9	7449.6	7434.9	132.4
							sum =	TOTAL	100.0%	1141.5	396.6	392.3	1451.5	13049.8	13021.4	239.8
							EPA line-haul duty	cvcle weighted br	ake-specific emis	sions	0.347	0.34	1.3	11.4	11.4	0.21
							EPA line-haul duty					1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual N	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	EF	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC					EF Notch	•	w-BHP	w-bsfc	w-HC	w-CO			
Individual Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	PM (g/hp-hr) 1.43		EPA WF			Ü		w-NOx w-(g/hr) 0.0	w-(g/hr)	w-(g/hr)
Notch	Notch brake	bsfc	HC				(g/hp-hr)	Notch	EPA	w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)		
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.381	HC (g/hp-hr) 8.89	(g/hp-hr) 6.35	(g/hp-hr) 55.29	(g/hp-hr) 54.93	(g/hp-hr) 1.43	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.381 1.828	HC (g/hp-hr) 8.89 7.84	(g/hp-hr) 6.35 4.25	(g/hp-hr) 55.29 56.42	(g/hp-hr) 54.93 56.13	(g/hp-hr) 1.43 0.90	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.3	w-HC w-(g/hr) 0.0 31.4	w-CO w-(g/hr) 0.0 17.0	w-(g/hr) 0.0 226.0	w-(g/hr) 0.0 224.9	w-(g/hr) 0.0 3.6
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381	HC (g/hp-hr) 8.89 7.84 8.89	(g/hp-hr) 6.35 4.25 6.35	(g/hp-hr) 55.29 56.42 55.29	(g/hp-hr) 54.93 56.13 54.93	(g/hp-hr) 1.43 0.90 1.43	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.7	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5	w-HC w-(g/hr) 0.0 31.4 50.2	w-CO w-(g/hr) 0.0 17.0 35.9	w-(g/hr) 0.0 226.0 312.5	w-(g/hr) 0.0 224.9 310.4	w-(g/hr) 0.0 3.6 8.1
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435	HC (g/hp-hr) 8.89 7.84 8.89 0.73	(g/hp-hr) 6.35 4.25 6.35 0.71	(g/hp-hr) 55.29 56.42 55.29 10.50	(g/hp-hr) 54.93 56.13 54.93 10.46	(g/hp-hr) 1.43 0.90 1.43 0.18	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0	w-HC w-(g/hr) 0.0 31.4 50.2 18.6	w-CO w-(g/hr) 0.0 17.0 35.9 18.0	w-(g/hr) 0.0 226.0 312.5 266.5	w-(g/hr) 0.0 224.9 310.4 265.3	w-(g/hr) 0.0 3.6 8.1 4.6
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.7 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1	w-(g/hr) 0.0 226.0 312.5 266.5 517.6	w-(g/hr) 0.0 224.9 310.4 265.3 516.2	w-(g/hr) 0.0 3.6 8.1 4.6 10.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.7 25.4 53.8 56.8	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363 0.355	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38 1.23	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02 10.49	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00 10.46	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.7 25.4 53.8 56.8 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6 19.4	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8 13.6	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3 67.2	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2 573.6	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1 572.0	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5 12.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363 0.355 0.350	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30 0.25 0.23	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38 1.23 2.26	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02 10.49 10.30	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00 10.46 10.29	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22 0.23 0.24	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.7 25.4 53.8 56.8 54.7 71.6	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6 19.4 25.1	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8 13.6 16.2	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3 67.2 161.9	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2 573.6 737.4	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1 572.0 736.2	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5 12.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363 0.355 0.350 0.333 0.323	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30 0.25 0.23 0.25 0.28	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38 1.23 2.26 2.23 1.17	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02 10.49 10.30 11.38 13.19	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00 10.46 10.29 11.36 13.17	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22 0.23 0.24 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.0 5.7 25.4 53.8 56.8 54.7 71.6 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6 19.4 25.1 14.4 2.4	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8 13.6 16.2 10.8 2.0	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3 67.2 161.9 96.4 8.6	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2 573.6 737.4 491.6 96.4	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1 572.0 736.2 490.7 96.2	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5 12.5 17.4 8.4 1.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363 0.355 0.350 0.333	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30 0.25 0.23 0.25	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38 1.23 2.26 2.23	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02 10.49 10.30 11.38	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00 10.46 10.29 11.36	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22 0.23 0.24 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.8 56.8 54.7 71.6 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6 19.4 25.1 14.4	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8 13.6 16.2 10.8	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3 67.2 161.9 96.4	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2 573.6 737.4 491.6	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1 572.0 736.2 490.7	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5 12.5 17.4 8.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.381 1.828 2.381 0.435 0.386 0.363 0.355 0.350 0.333 0.323	HC (g/hp-hr) 8.89 7.84 8.89 0.73 0.45 0.30 0.25 0.23 0.25 0.28	(g/hp-hr) 6.35 4.25 6.35 0.71 0.50 0.38 1.23 2.26 2.23 1.17	(g/hp-hr) 55.29 56.42 55.29 10.50 9.62 10.02 10.49 10.30 11.38 13.19	(g/hp-hr) 54.93 56.13 54.93 10.46 9.59 10.00 10.46 10.29 11.36 13.17	(g/hp-hr) 1.43 0.90 1.43 0.18 0.19 0.22 0.23 0.24 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 4.0 5.7 25.4 53.8 56.8 54.7 71.6 43.2 7.3 33.4 355.8	w-bsfc w-(lb/hp-hr) 0.0 7.3 13.5 11.0 20.8 20.6 19.4 25.1 14.4 2.4	w-HC w-(g/hr) 0.0 31.4 50.2 18.6 24.2 16.8 13.6 16.2 10.8 2.0 9.4	w-CO w-(g/hr) 0.0 17.0 35.9 18.0 27.1 21.3 67.2 161.9 96.4 8.6 35.9	w-(g/hr) 0.0 226.0 312.5 266.5 517.6 569.2 573.6 737.4 491.6 96.4 367.9	w-(g/hr) 0.0 224.9 310.4 265.3 516.2 568.1 572.0 736.2 490.7 96.2 367.2	w-(g/hr) 0.0 3.6 8.1 4.6 10.3 12.5 12.5 17.4 8.4 1.5 6.5

BN #9696 Test Date 3-11-99 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Project 08-2062-001								Weighted Results EPA Line-Haul								
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.4	185	122	1,090	1,080	37	DB-2	12.5%	2.4	5.9	23.1	15.3	136.3	135.0	4.6
Low Idle	13	25.5	102	59	768	760	13	Low Idle	19.0%	2.5	4.8	19.4	11.2	145.9	144.5	2.5
Idle	19	47.4	185	122	1,090	1,080	37	Idle	19.0%	3.6	9.0	35.2	23.2	207.1	205.2	7.0
N1	205	91.0	148	142	2,163	2,143	42	N1	6.5%	13.3	5.9	9.6	9.2	140.6	139.3	2.7
N2	439	169.0	191	213	4,110	4,075	92	N2	6.5%	28.5	11.0	12.4	13.8	267.2	264.9	6.0
N3	981	355.0	284	389	9,889	9,807	229	N3	5.2%	51.0	18.5	14.8	20.2	514.2	510.0	11.9
N4	1,518	538.0	376	1,772	15,951	15,825	372	N4	4.4%	66.8	23.7	16.5	78.0	701.8	696.3	16.4
N5	1,990	692.0	468	3,691	20,958	20,790	486	N5	3.8%	75.6	26.3	17.8	140.3	796.4	790.0	18.5
N6	2,883	955.0	706	5,031	34,159	33,884	581	N6	3.9%	112.4	37.2	27.5	196.2	1332.2	1321.5	22.7
N7	3,655	1,179.0	917	3,790	46,255	45,907	786	N7	3.0%	109.7	35.4	27.5	113.7	1387.7	1377.2	23.6
N8	4,207	1,361.0	1,094	4,126	46,033	45,701	896	N8	16.2%	681.6	220.5	177.2	668.4	7457.3	7403.6	145.2
							sum =	TOTAL	100.0%	1147.4	398.2	381.1	1289.5	13086.7	12987.4	261.0
							EPA line-hau	I duty cycle weighted b	rake-specific en	nissions	0.347	0.33	1.1	11.4	11.3	0.23
							EPA line-hau	I duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	e						
Individual Notch brake-specific emissions									Í			Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.495	9.74	6.42	57.37	56.84	1.95	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.903	7.61	4.40	57.31	56.74	0.97	Low Idle	29.9%	4.0	7.6	30.5	17.6	229.6	227.3	3.9
Idle		2.495	9.74	6.42	57.37	56.84	1.95	Idle	29.9%	5.7	14.2	55.3	36.5	325.9	322.9	11.1
N1		0.445	0.72	0.69	10.57	10.47	0.21	N1	12.4%	25.4	11.3	18.4	17.6	268.2	265.7	5.2
N2		0.385	0.44	0.49	9.37	9.29	0.21	N2	12.3%	53.9	20.8	23.5	26.2	505.5	501.3	11.3
N3		0.362	0.29	0.40	10.08	10.00	0.23	N3	5.8%	56.9	20.6	16.5	22.6	573.6	568.8	13.3
N4		0.355	0.25	1.17	10.51	10.43	0.25	N4	3.6%	54.6	19.4	13.5	63.8	574.2	569.7	13.4
N5		0.348	0.24	1.85	10.53	10.45	0.24	N5	3.6%	71.6	24.9	16.8	132.9	754.5	748.4	17.5
N6		0.331	0.24	1.74	11.85	11.75	0.20	N6	1.5%	43.2	14.3	10.6	75.5	512.4	508.3	8.7
N7		0.323	0.25	1.04	12.65	12.56	0.22	N7	0.2%	7.3	2.4	1.8	7.6	92.5	91.8	1.6
N8		0.323	0.26	0.98	10.94	10.86	0.21	N8	0.8%	33.7	10.9	8.8	33.0	368.3	365.6	7.2
								TOTAL	100.0%	356.4	146.3	195.7	433.2	4204.7	4169.9	93.1
							EPA switch d	uty cycle weighted bra	ke-specific emis	ssions	0.411	0.55	1.22	11.80	11.70	0.26
								ycle maximum Tier 0	F			2.10	8.0	14.0	14.0	0.72

BN #9696 Test Date 3-15-99 CARB Diesel Fuel EM-2663-F Run #3/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	44.0	170	103	1,025	999	53	DB-2	12.5%	2.4	5.5	21.3	12.9	128.1	124.9	6.6
Low Idle	14	27.5	110	61	840	818	31	Low Idle	19.0%	2.6	5.2	20.9	11.6	159.6	155.4	5.9
Idle	19	44.0	170	103	1,025	999	53	Idle	19.0%	3.6	8.4	32.3	19.6	194.8	189.8	10.1
N1	205	92.0	146	147	2,171	2,118	55	N1	6.5%	13.3	6.0	9.5	9.6	141.1	137.7	3.6
N2	439	171.0	189	214	4,166	4,071	97	N2	6.5%	28.5	11.1	12.3	13.9	270.8	264.6	6.3
N3	981	353.0	286	319	9,757	9,534	230	N3	5.2%	51.0	18.4	14.9	16.6	507.4	495.8	12.0
N4	1,519	533.0	354	1,119	16,299	15,930	366	N4	4.4%	66.8	23.5	15.6	49.2	717.2	700.9	16.1
N5	2,009	692.0	438	2,431	21,267	20,817	405	N5	3.8%	76.3	26.3	16.6	92.4	808.1	791.0	15.4
N6	2,883	946.0	674	3,623	34,194	33,485	550	N6	3.9%	112.4	36.9	26.3	141.3	1333.6	1305.9	21.5
N7	3,656	1,173.0	874	2,887	46,000	45,046	805	N7	3.0%	109.7	35.2	26.2	86.6	1380.0	1351.4	24.2
N8	4,211	1,354.0	1,035	3,567	46,937	45,945	951	N8	16.2%	682.1	219.3	167.7	577.9	7603.8	7443.0	154.1
	,	,	,	,	,	,	sum =	TOTAL	100.0%	1148.8	395.7	363.5	1031.5	13244.4	12960.5	275.6
							EPA line-haul du	ty cycle weighted br	ake-specific emis	ssions	0.344	0.32	0.9	11.5	11.3	0.24
							EPA line-haul du	ty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
	Notch brake	bsfc	HC	со	Corr. NOx	KH-NOx	РМ		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)		w-NOx w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.292	HC (g/hp-hr) 8.85	(g/hp-hr) 5.36	(g/hp-hr) 53.39	(g/hp-hr) 52.04	(g/hp-hr) 2.76	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.292 2.037	HC (g/hp-hr) 8.85 8.15	(g/hp-hr) 5.36 4.52	(g/hp-hr) 53.39 62.22	(g/hp-hr) 52.04 60.59	(g/hp-hr) 2.76 2.30	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 8.2	w-HC w-(g/hr) 0.0 32.9	w-CO w-(g/hr) 0.0 18.2	w-(g/hr) 0.0 251.2	w-(g/hr) 0.0 244.6	w-(g/hr) 0.0 9.3
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292	HC (g/hp-hr) 8.85 8.15 8.85	(g/hp-hr) 5.36 4.52 5.36	(g/hp-hr) 53.39 62.22 53.39	(g/hp-hr) 52.04 60.59 52.04	(g/hp-hr) 2.76 2.30 2.76	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.0 5.7	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2	w-HC w-(g/hr) 0.0 32.9 50.8	w-CO w-(g/hr) 0.0 18.2 30.8	w-(g/hr) 0.0 251.2 306.5	w-(g/hr) 0.0 244.6 298.8	w-(g/hr) 0.0 9.3 15.8
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449	HC (g/hp-hr) 8.85 8.15 8.85 0.71	(g/hp-hr) 5.36 4.52 5.36 0.72	(g/hp-hr) 53.39 62.22 53.39 10.61	(g/hp-hr) 52.04 60.59 52.04 10.35	(g/hp-hr) 2.76 2.30 2.76 0.27	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4	w-HC w-(g/hr) 0.0 32.9 50.8 18.1	w-CO w-(g/hr) 0.0 18.2 30.8 18.2	w-(g/hr) 0.0 251.2 306.5 269.2	w-(g/hr) 0.0 244.6 298.8 262.7	w-(g/hr) 0.0 9.3 15.8 6.8
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.7 25.4 53.9	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3	w-(g/hr) 0.0 251.2 306.5 269.2 512.4	w-(g/hr) 0.0 244.6 298.8 262.7 500.7	w-(g/hr) 0.0 9.3 15.8 6.8 11.9
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.7 25.4 53.9 56.9	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360 0.351	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.7 25.4 53.9 56.9 54.7	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360 0.351 0.344	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23 0.22	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74 1.21	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73 10.59	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49 10.36	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.7 25.4 53.9 56.9 54.7 72.3	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7 15.8	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3 87.5	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8 765.6	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360 0.351	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.9 56.9 54.7	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9 14.2	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4 502.3	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6 8.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360 0.351 0.344	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23 0.22	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74 1.21	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73 10.59	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49 10.36	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20 0.19 0.22	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.7 25.4 53.9 56.9 54.7 72.3 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7 15.8 10.1	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3 87.5 54.3 5.8	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8 765.6 512.9 92.0	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4 502.3 90.1	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6 8.3 1.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.360 0.351 0.344 0.328	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23 0.22 0.23	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74 1.21 1.26	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73 10.59 11.86	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49 10.36 11.61	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.9 56.9 54.7 72.3 43.2	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9 14.2	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7 15.8 10.1	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3 87.5 54.3	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8 765.6 512.9	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4 502.3	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6 8.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.351 0.344 0.328 0.321	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23 0.22 0.23 0.24	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74 1.21 1.26 0.79	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73 10.59 11.86 12.58	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49 10.36 11.61 12.32	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20 0.19 0.22	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.7 25.4 53.9 56.9 54.7 72.3 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9 14.2 2.3	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7 15.8 10.1	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3 87.5 54.3 5.8	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8 765.6 512.9 92.0	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4 502.3 90.1	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6 8.3 1.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.292 2.037 2.292 0.449 0.390 0.351 0.344 0.328 0.321	HC (g/hp-hr) 8.85 8.15 8.85 0.71 0.43 0.29 0.23 0.22 0.23 0.24	(g/hp-hr) 5.36 4.52 5.36 0.72 0.49 0.33 0.74 1.21 1.26 0.79	(g/hp-hr) 53.39 62.22 53.39 10.61 9.50 9.94 10.73 10.59 11.86 12.58	(g/hp-hr) 52.04 60.59 52.04 10.35 9.28 9.72 10.49 10.36 11.61 12.32	(g/hp-hr) 2.76 2.30 2.76 0.27 0.22 0.23 0.24 0.20 0.19 0.22 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 4.0 5.7 25.4 53.9 56.9 54.7 72.3 43.2 7.3 33.7 357.2	w-bsfc w-(lb/hp-hr) 0.0 8.2 13.2 11.4 21.0 20.5 19.2 24.9 14.2 2.3 10.8	w-HC w-(g/hr) 0.0 32.9 50.8 18.1 23.2 16.6 12.7 15.8 10.1 1.7 8.3	w-CO w-(g/hr) 0.0 18.2 30.8 18.2 26.3 18.5 40.3 87.5 54.3 5.8 28.5	w-(g/hr) 0.0 251.2 306.5 269.2 512.4 565.9 586.8 765.6 512.9 92.0 375.5	w-(g/hr) 0.0 244.6 298.8 262.7 500.7 553.0 573.5 749.4 502.3 90.1 367.6	w-(g/hr) 0.0 9.3 15.8 6.8 11.9 13.3 13.2 14.6 8.3 1.6 7.6

BNSF No. 9696 Test Results Using On-Highway Diesel Fuel

BN #9696 Test Date 3-9-99 On-Highway Diesel Fuel EM-2677-F Run #1/3

SwRI Proje	ect 08-2062	-001	,						EDA Line Herr	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Hau WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	47.0	166	153	1,174	1,151	92	DB-2	12.5%	2.4	5.9	20.8	19.1	146.8	143.8	11.5
Low Idle	13	25.2	94	67	808	792	29	Low Idle	19.0%	2.5	4.8	17.9	12.7	153.5	150.5	5.5
Idle	19	47.0	166	153	1,174	1,151	92	Idle	19.0%	3.6	8.9	31.5	29.1	223.1	218.6	17.5
N1	205	88.0	148	153	2,222	2,183	69	N1	6.5%	13.3	5.7	9.6	9.9	144.4	141.9	4.5
N2	438	169.2	186	221	4,489	4,435	75	N2	6.5%	28.5	11.0	12.1	14.4	291.8	288.3	4.9
N3	980	357.6	309	339	10,590	10,464	207	N3	5.2%	50.9	18.6	16.1	17.6	550.7	544.1	10.8
N4	1,519	541.2	404	1,511	17,061	16,876	389	N4	4.4%	66.9	23.8	17.8	66.5	750.7	742.6	17.1
N5	1,996	699.6	478	3,169	22,431	22,191	496	N5	3.8%	75.8	26.6	18.2	120.4	852.4	843.3	18.8
N6	2,883	957.6	715	4,464	34,538	34,176	695	N6	3.9%	112.4	37.3	27.9	174.1	1347.0	1332.9	27.1
N7	3,656	1,182.0	944	3,244	48,527	48,062	874	N7	3.0%	109.7	35.5	28.3	97.3	1455.8	1441.9	26.2
N8	4,210	1,370.4	1,206	3,599	49,167	48,734	1,039	N8	16.2%	682.0	222.0	195.4	583.0	7965.1	7894.9	168.3
	, -	,	,	.,	-, -	-, -	sum =	TOTAL	100.0%	1148.1	400.1	395.4	1144.2	13881.1	13742.7	312.2
							EPA line-haul	duty cycle weighted br	ake-specific en	nissions	0.349	0.34	1.0	12.1	12.0	0.27
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								El	PA Switch Cycle	е						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.474	8.74	8.05	61.79	60.56	4.84	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.881	7.01	5.00	60.30	59.11	2.16	Low Idle	29.9%	4.0	7.5	28.1	20.0	241.6	236.8	8.7
Idle		2.474	8.74	8.05	61.79	60.56	4.84	Idle	29.9%	5.7	14.1	49.6	45.7	351.0	344.0	27.5
N1		0.430	0.72	0.75	10.86	10.67	0.34	N1	12.4%	25.4	10.9	18.4	19.0	275.5	270.7	8.6
N2		0.386	0.42	0.50	10.24	10.12	0.17	N2	12.3%	53.9	20.8	22.9	27.2	552.1	545.5	9.2
N3		0.365	0.32	0.35	10.81	10.68	0.21	N3	5.8%	56.8	20.7	17.9	19.7	614.2	606.9	12.0
N4		0.356	0.27	0.99	11.23	11.11	0.26	N4	3.6%	54.7	19.5	14.5	54.4	614.2	607.6	14.0
N5		0.351	0.24	1.59	11.24	11.12	0.25	N5	3.6%	71.8	25.2	17.2	114.1	807.5	798.9	17.9
N6		0.332	0.25	1.55	11.98	11.85	0.24	N6	1.5%	43.2	14.4	10.7	67.0	518.1	512.6	10.4
N7		0.323	0.26	0.89	13.27	13.15	0.24	N7	0.2%	7.3	2.4	1.9	6.5	97.1	96.1	1.7
N8		0.326	0.29	0.85	11.68	11.58	0.25	N8	0.8%	33.7	11.0	9.6	28.8	393.3	389.9	8.3
								TOTAL	100.0%	356.6	146.4	190.9	402.3	4464.7	4409.0	118.3
								ty cycle weighted brak	e-specific emis	sions	0.411	0.54	1.13	12.52	12.37	0.33
							EPA switch cyc	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BN #9696 Test Date 3-10-99 On-Highway Diesel Fuel EM-2677-F Run #2/3

SwRI Project 08-2062-001									۱ EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	18.9 13 18.9 205 438 980 1,519 1,995 2,883 3,656 4,209	46.2 26.5 46.2 92.0 170.0 358.0 540.0 698.0 958.0 1,184.0 1,370.0	182 107 182 157 218 325 428 528 765 986 1,201	155 74 155 156 238 368 1,575 3,441 4,447 3,288 3,765	1151 871 1151 2,402 4,229 10,062 16,343 21,700 34,862 48,398 49,250	1,140 862 1,140 2,380 4,192 9,972 16,201 21,510 34,520 47,901 48,677	46 15 46 50 109 276 396 515 666 886 1,026 sum =	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	12.5% 19.0% 19.0% 6.5% 6.5% 4.4% 3.8% 3.9% 3.0% 16.2% 100.0%	2.4 2.5 3.6 13.3 28.5 50.9 66.8 75.8 112.5 109.7 681.9 1147.9	5.8 5.0 8.8 6.0 11.1 18.6 23.8 26.5 37.4 35.5 221.9 400.3	22.8 20.3 34.6 10.2 14.2 16.9 18.8 20.1 29.8 29.6 194.6 411.8	19.4 14.1 29.5 10.1 15.5 19.1 69.3 130.8 173.4 98.6 609.9 1189.7	143.9 165.5 218.7 156.1 274.9 523.2 719.1 824.6 1359.6 1451.9 7978.5 13816.0	142.5 163.7 216.5 154.7 272.5 518.5 712.8 817.4 1346.3 1437.0 7885.7 13667.6	5.8 2.9 8.7 3.3 7.1 14.4 17.4 19.6 26.0 26.6 166.2 297.8
							EPA line-haul duty EPA line-haul duty			sions	0.349	0.36 1.00	1.0 5.0	12.0 9.5	11.9 9.5	0.26 0.60
Individual N	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	-specific em bsfc (lb/hp-hr) 2.444 1.978 2.444 0.450 0.388 0.365 0.356 0.356 0.350 0.332 0.324 0.325	HC (g/hp-hr) 9.63 7.99 9.63 0.77 0.50 0.33 0.28 0.27 0.27 0.29	CO (g/hp-hr) 8.20 5.52 8.20 0.76 0.54 0.38 1.04 1.72 1.54 0.90 0.89	Corr. NOx (g/hp-hr) 60.90 65.00 60.90 11.74 9.65 10.27 10.76 10.88 12.09 13.24 11.70	KH-NOx (g/hp-hr) 60.30 64.31 60.30 11.63 9.56 10.18 10.67 10.78 11.97 13.10 11.56	PM (g/hp-hr) 2.43 1.12 2.43 0.24 0.25 0.28 0.26 0.26 0.23 0.24 0.24	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 4.0 5.7 25.4 53.9 56.8 54.7 71.8 43.3 7.3 33.7 356.5	w-bsfc w-(lb/hp-hr) 0.0 7.9 13.8 11.4 20.9 20.8 19.4 25.1 14.4 2.4 11.0 147.1	Weighted R W-HC W-(g/hr) 0.0 32.0 54.4 19.5 26.8 18.9 15.4 19.0 11.5 2.0 9.6 209.0	w-CO w-(g/hr) 0.0 22.1 46.3 19.3 29.3 21.3 56.7 123.9 66.7 6.6 30.1 422.4	w-NOx w-(g/hr) 0.0 260.4 344.1 297.8 520.2 583.6 588.3 781.2 522.9 96.8 394.0 4389.5	w-KH-NOx w-(g/hr) 0.0 257.7 340.8 295.1 515.6 578.4 583.2 774.4 517.8 95.8 389.4 4348.1	w-PM w-(g/hr) 0.0 4.5 13.8 6.2 13.4 16.0 14.3 18.5 10.0 1.8 8.2 106.6

BN #9696 Test Date 3-12-99 On-Highway Diesel Fuel EM-2677-F Run #3/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resi	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	19	48.6	190	168	1,239	1,220	42	DB-2	12.5%	2.4	6.1	23.8	21.0	154.9	152.6	5.3
Low Idle	13	26.0	106	77	867	855	14	Low Idle	19.0%	2.5	4.9	20.1	14.6	164.7	162.5	2.7
Idle	19	48.6	190	168	1,239	1,220	42	Idle	19.0%	3.6	9.2	36.1	31.9	235.4	231.9	8.0
N1	205	91.0	133	171	2,325	2,298	31	N1	6.5%	13.3	5.9	8.6	11.1	151.1	149.4	2.0
N2	438	172.0	189	261	4,412	4,361	85	N2	6.5%	28.4	11.2	12.3	17.0	286.8	283.5	5.5
N3	980	358.0	287	409	10,185	10,068	203	N3	5.2%	51.0	18.6	14.9	21.3	529.6	523.5	10.6
N4	1,519	545.0	355	2,031	15,692	15,525	398	N4	4.4%	66.8	24.0	15.6	89.4	690.4	683.1	17.5
N5	1,965	693.0	422	3,714	20,810	20,583	505	N5	3.8%	74.7	26.3	16.0	141.1	790.8	782.2	19.2
N6	2,881	963.0	671	5,551	34,819	34,427	659	N6	3.9%	112.4	37.6	26.2	216.5	1357.9	1342.6	25.7
N7	3,652	1,194.0	858	4,140	47,525	46,997	766	N7	3.0%	109.6	35.8	25.7	124.2	1425.8	1409.9	23.0
N8	4,197	1,375.0	1,065	4,732	48,691	48,154	917	N8	16.2%	679.8	222.8	172.5	766.6	7887.9	7800.9	148.6
	,	,	,	,	,	,	sum =	TOTAL	100.0%	1144.5	402.4	371.9	1454.7	13675.4	13522.1	267.9
							EPA line-haul duty	cycle weighted br	ake-specific emis	sions	0.352	0.32	1.3	11.9	11.8	0.23
								cycle maximum T				1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions								,	Weighted R	esults			
Individual	Notch brake			CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	Weighted Reward		w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC	CO (g/hp-hr)	Corr. NOx	KH-NOx		Notch		w-BHP	w-bsfc	w-HC	w-CO			w-PM w-(g/hr)
Notch	Notch brake	bsfc (lb/hp-hr)		CO (g/hp-hr) 8.75	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch DB-2	WF			Ü		w-NOx w-(g/hr) 0.0	w-(g/hr)	w-(g/hr)
Notch	Notch brake	bsfc	HC (g/hp-hr)	(g/hp-hr)						w-BHP 0.0 4.0	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)		
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.531	HC (g/hp-hr) 9.90	(g/hp-hr) 8.75	(g/hp-hr) 64.53	(g/hp-hr) 63.56	(g/hp-hr) 2.19	DB-2	WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.531 1.940	HC (g/hp-hr) 9.90 7.91	(g/hp-hr) 8.75 5.75	(g/hp-hr) 64.53 64.70	(g/hp-hr) 63.56 63.83	(g/hp-hr) 2.19 1.04	DB-2 Low Idle	WF 0.0% 29.9%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.8	w-HC w-(g/hr) 0.0 31.7	w-CO w-(g/hr) 0.0 23.0	w-(g/hr) 0.0 259.2	w-(g/hr) 0.0 255.8	w-(g/hr) 0.0 4.2
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531	HC (g/hp-hr) 9.90 7.91 9.90	(g/hp-hr) 8.75 5.75 8.75	(g/hp-hr) 64.53 64.70 64.53	(g/hp-hr) 63.56 63.83 63.56	(g/hp-hr) 2.19 1.04 2.19	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 4.0 5.7	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5	w-HC w-(g/hr) 0.0 31.7 56.8	w-CO w-(g/hr) 0.0 23.0 50.2	w-(g/hr) 0.0 259.2 370.5	w-(g/hr) 0.0 255.8 364.9	w-(g/hr) 0.0 4.2 12.6
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445	HC (g/hp-hr) 9.90 7.91 9.90 0.65	(g/hp-hr) 8.75 5.75 8.75 0.84	(g/hp-hr) 64.53 64.70 64.53 11.36	(g/hp-hr) 63.56 63.83 63.56 11.22	(g/hp-hr) 2.19 1.04 2.19 0.15	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3	w-HC w-(g/hr) 0.0 31.7 56.8 16.5	w-CO w-(g/hr) 0.0 23.0 50.2 21.2	w-(g/hr) 0.0 259.2 370.5 288.3	w-(g/hr) 0.0 255.8 364.9 284.9	w-(g/hr) 0.0 4.2 12.6 3.8
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.7 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1	w-(g/hr) 0.0 259.2 370.5 288.3 542.7	w-(g/hr) 0.0 255.8 364.9 284.9 536.4	w-(g/hr) 0.0 4.2 12.6 3.8 10.5
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.7 25.4 53.8 56.9	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365 0.359	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29 0.23	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42 1.34	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39 10.33	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27 10.22	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21 0.26	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.7 25.4 53.8 56.9 54.7	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8 19.6	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6 12.8	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7 73.1	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7 564.9	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0 558.9	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8 14.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365 0.359 0.353	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29 0.23 0.21	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42 1.34 1.89	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39 10.33 10.59	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27 10.22 10.48	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21 0.26 0.26	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.0 5.7 25.4 53.8 56.9 54.7 70.7	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8 19.6 24.9	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6 12.8 15.2	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7 73.1 133.7	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7 564.9 749.2	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0 558.9 741.0	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8 14.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365 0.359 0.353 0.334	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29 0.23 0.21 0.23	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42 1.34 1.89 1.93	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39 10.33 10.59 12.09	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27 10.22 10.48 11.95	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21 0.26 0.26 0.23	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.8 56.9 54.7 70.7 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8 19.6 24.9 14.4	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6 12.8 15.2 10.1	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7 73.1 133.7 83.3	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7 564.9 749.2 522.3	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0 558.9 741.0 516.4	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8 14.3 18.2 9.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365 0.359 0.353 0.334 0.327	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29 0.23 0.21 0.23	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42 1.34 1.89 1.93 1.13	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39 10.33 10.59 12.09 13.01	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27 10.22 10.48 11.95 12.87	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21 0.26 0.26 0.23 0.21	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.7 25.4 53.8 56.9 54.7 70.7 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8 19.6 24.9 14.4 2.4	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6 12.8 15.2 10.1	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7 73.1 133.7 83.3 8.3	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7 564.9 749.2 522.3 95.1	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0 558.9 741.0 516.4 94.0	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8 14.3 18.2 9.9 1.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.531 1.940 2.531 0.445 0.393 0.365 0.359 0.353 0.334 0.327	HC (g/hp-hr) 9.90 7.91 9.90 0.65 0.43 0.29 0.23 0.21 0.23	(g/hp-hr) 8.75 5.75 8.75 0.84 0.60 0.42 1.34 1.89 1.93 1.13	(g/hp-hr) 64.53 64.70 64.53 11.36 10.08 10.39 10.33 10.59 12.09 13.01	(g/hp-hr) 63.56 63.83 63.56 11.22 9.97 10.27 10.22 10.48 11.95 12.87	(g/hp-hr) 2.19 1.04 2.19 0.15 0.19 0.21 0.26 0.26 0.23 0.21 0.22	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.0 5.7 25.4 53.8 56.9 54.7 70.7 43.2 7.3 33.6 355.3	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.5 11.3 21.2 20.8 19.6 24.9 14.4 2.4	w-HC w-(g/hr) 0.0 31.7 56.8 16.5 23.2 16.6 12.8 15.2 10.1 1.7 8.5	w-CO w-(g/hr) 0.0 23.0 50.2 21.2 32.1 23.7 73.1 133.7 83.3 8.3 37.9	w-(g/hr) 0.0 259.2 370.5 288.3 542.7 590.7 564.9 749.2 522.3 95.1 389.5	w-(g/hr) 0.0 255.8 364.9 284.9 536.4 584.0 558.9 741.0 516.4 94.0 385.2	w-(g/hr) 0.0 4.2 12.6 3.8 10.5 11.8 14.3 18.2 9.9 1.5 7.3

BNSF No. 9696 Test Results Using High-Sulfur Diesel Fuel

BN #9696 Test Date 3-11-99 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	48.0	183	153	1,249	1,244	47	DB-2	12.5%	2.4	6.0	22.9	19.1	156.1	155.5	5.9
Low Idle	13	25.5	100	70	857	852	15	Low Idle	19.0%	2.5	4.8	19.0	13.3	162.8	161.8	2.9
Idle	19	48.0	183	153	1,249	1,244	47	Idle	19.0%	3.6	9.1	34.8	29.1	237.3	236.3	8.9
N1	205	91.0	147	153	2,303	2,288	42	N1	6.5%	13.3	5.9	9.6	9.9	149.7	148.7	2.7
N2	439	172.0	194	254	4,324	4,299	99	N2	6.5%	28.5	11.2	12.6	16.5	281.1	279.4	6.4
N3	979	360.0	279	390	9,993	9,936	266	N3	5.2%	50.9	18.7	14.5	20.3	519.6	516.7	13.8
N4	1,520	546.0	361	1,932	15,963	15,872	504	N4	4.4%	66.9	24.0	15.9	85.0	702.4	698.4	22.2
N5	1,984	702.0	433	3,901	21,211	21.087	628	N5	3.8%	75.4	26.7	16.5	148.2	806.0	801.3	23.9
N6	2,883	967.0	627	5,462	34,305	34,116	776	N6	3.9%	112.5	37.7	24.5	213.0	1337.9	1330.5	30.3
N7	3,653	1,190.0	818	3,504	48,840	48,583	909	N7	3.0%	109.6	35.7	24.5	105.1	1465.2	1457.5	27.3
N8	4,204	1,378.0	1,026	4,135	50,191	49,917	1,106	N8	16.2%	681.0	223.2	166.2	669.9	8130.9	8086.6	179.2
	,	,	,	,	,	-,-	sum =	TOTAL	100.0%	1146.7	403.1	360.9	1329.5	13949.1	13872.8	323.4
							EPA line-haul	duty cycle weighted br	ake-specific em	nissions	0.352	0.31	1.2	12.2	12.1	0.28
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EI	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.500	9.53	7.97	65.05	64.78	2.45	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.903	7.46	5.22	63.96	63.56	1.12	Low Idle	29.9%	4.0	7.6	29.9	20.9	256.2	254.7	4.5
Idle		2.500	9.53	7.97	65.05	64.78	2.45	Idle	29.9%	5.7	14.4	54.7	45.7	373.5	371.9	14.1
N1		0.445	0.72	0.75	11.25	11.18	0.21	N1	12.4%	25.4	11.3	18.2	19.0	285.6	283.8	5.2
N2		0.392	0.44	0.58	9.86	9.80	0.23	N2	12.3%	53.9	21.2	23.9	31.2	531.9	528.8	12.2
N3		0.368	0.28	0.40	10.20	10.15	0.27	N3	5.8%	56.8	20.9	16.2	22.6	579.6	576.3	15.4
N4		0.359	0.24	1.27	10.50	10.44	0.33	N4	3.6%	54.7	19.7	13.0	69.6	574.7	571.4	18.1
N5		0.354	0.22	1.97	10.69	10.63	0.32	N5	3.6%	71.4	25.3	15.6	140.4	763.6	759.1	22.6
N6		0.335	0.22	1.89	11.90	11.83	0.27	N6	1.5%	43.3	14.5	9.4	81.9	514.6	511.7	11.6
N7		0.326	0.22	0.96	13.37	13.30	0.25	N7	0.2%	7.3	2.4	1.6	7.0	97.7	97.2	1.8
N8		0.328	0.24	0.98	11.94	11.87	0.26	N8	0.8%	33.6	11.0	8.2	33.1	401.5	399.3	8.8
								TOTAL	100.0%	356.2	148.1	190.7	471.5	4378.8	4354.2	114.4
							EPA switch du	ty cycle weighted brak	e-specific emis	sions	0.416	0.54	1.32	12.29	12.22	0.32
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BN #9696 Test Date 3-12-99 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/3

SwRI Proje	ect 08-2062	-001								eighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
		` ,	,	,	,		,				` ' '					
DB-2	19	48.0	187	161	1,248	1,230	44	DB-2	12.5%	2.4	6.0	23.4	20.1	156.0	153.8	5.5
Low Idle	13	26.0	103	74	899	886	19	Low Idle	19.0%	2.5	4.9	19.6	14.1	170.8	168.4	3.6
Idle	19	48.0	187	161	1,248	1,230	44	Idle	19.0%	3.6	9.1	35.5	30.6	237.1	233.7	8.4
N1	205	91.0	143	170	2,303	2,271	43	N1	6.5%	13.3	5.9	9.3	11.1	149.7	147.6	2.8
N2	438	173.0	201	261	4,384	4,323	105	N2	6.5%	28.4	11.2	13.1	17.0	285.0	281.0	6.8
N3	980	361.0	304	391	10,236	10,098	270	N3	5.2%	51.0	18.8	15.8	20.3	532.3	525.1	14.0
N4	1,517	546.0	389	2,000	16,261	16,040	531	N4	4.4%	66.8	24.0	17.1	88.0	715.5	705.7	23.4
N5	1,972	699.0	471	3,919	21,463	21,163	669	N5	3.8%	74.9	26.6	17.9	148.9	815.6	804.2	25.4
N6	2,883	964.0	672	5,214	35,019	34,542	851	N6	3.9%	112.4	37.6	26.2	203.3	1365.7	1347.1	33.2
N7	3,657	1,191.0	897	3,635	49,853	49,184	957	N7	3.0%	109.7	35.7	26.9	109.1	1495.6	1475.5	28.7
N8	4,208	1,379.0	1,095	4,192	50,976	50,291	1,249	N8	16.2%	681.7	223.4	177.4	679.1	8258.1	8147.2	202.3
							sum =	TOTAL	100.0%	1146.8	403.3	382.2	1341.5	14181.4	13989.4	354.2
							EPA line-haul duty	cycle weighted br	ake-specific emiss	ions	0.352	0.33	1.2	12.4	12.2	0.31
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle		,	Weighted R	esults			
Individual I	Notch brake			CO	Corr. NOx	KH-NOx	PM	EF	·	w-BHP		Ü		w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC	CO	Corr. NOx	KH-NOx	PM (g/hp-hr)		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx w-(a/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
	Notch brake	bsfc	HC						EPA WF 0.0%	0.0	w-bsfc	w-HC	w-CO			w-(g/hr) 0.0
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.526	HC (g/hp-hr) 9.84	(g/hp-hr) 8.47	(g/hp-hr) 65.68	(g/hp-hr) 64.75	(g/hp-hr) 2.32	Notch DB-2	EPA WF 0.0% 29.9%		w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr)
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.526 1.940	HC (g/hp-hr) 9.84 7.69	(g/hp-hr) 8.47 5.52	(g/hp-hr) 65.68 67.09	(g/hp-hr) 64.75 66.15	(g/hp-hr) 2.32 1.42	Notch DB-2 Low Idle	EPA WF 0.0%	0.0 4.0	w-bsfc w-(lb/hp-hr) 0.0 7.8	w-HC w-(g/hr) 0.0 30.8	w-CO w-(g/hr) 0.0 22.1	w-(g/hr) 0.0 268.8	w-(g/hr) 0.0 265.0	w-(g/hr) 0.0 5.7
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445	HC (g/hp-hr) 9.84 7.69 9.84	(g/hp-hr) 8.47 5.52 8.47	(g/hp-hr) 65.68 67.09 65.68 11.26	(g/hp-hr) 64.75 66.15 64.75 11.10	(g/hp-hr) 2.32 1.42 2.32	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4	w-HC w-(g/hr) 0.0 30.8 55.9	w-CO w-(g/hr) 0.0 22.1 48.1 21.1	w-(g/hr) 0.0 268.8 373.2 285.6	w-(g/hr) 0.0 265.0 367.8 281.6	w-(g/hr) 0.0 5.7 13.2 5.3
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46	(g/hp-hr) 8.47 5.52 8.47 0.83	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.0 5.7 25.4 53.8	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 21.3	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1	w-(g/hr) 0.0 268.8 373.2 285.6 539.2	w-(g/hr) 0.0 265.0 367.8 281.6 531.7	w-(g/hr) 0.0 5.7 13.2 5.3 12.9
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445	HC (g/hp-hr) 9.84 7.69 9.84 0.70	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60	(g/hp-hr) 65.68 67.09 65.68 11.26	(g/hp-hr) 64.75 66.15 64.75 11.10	(g/hp-hr) 2.32 1.42 2.32 0.21	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.0 5.7 25.4	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3	w-HC w-(g/hr) 0.0 30.8 55.9 17.7	w-CO w-(g/hr) 0.0 22.1 48.1 21.1	w-(g/hr) 0.0 268.8 373.2 285.6	w-(g/hr) 0.0 265.0 367.8 281.6	w-(g/hr) 0.0 5.7 13.2 5.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.0 5.7 25.4 53.8 56.9	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 21.3 20.9	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.360	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.0 5.7 25.4 53.8 56.9 54.6	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 21.3 20.9 19.7	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.368 0.355 0.334	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26 0.24	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32 1.99 1.81	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72 10.89 12.15	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57 10.73 11.98	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35 0.34 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.8 56.9 54.6 71.0 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 21.3 20.9 19.7 25.2	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0 17.0	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0 141.1 78.2	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4 772.7	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4 761.9 518.1	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1 24.1 12.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.360 0.355 0.334	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26 0.24 0.23 0.25	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32 1.99	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72 10.89 12.15 13.63	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57 10.73 11.98 13.45	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35 0.34 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.0 5.7 25.4 53.8 56.9 54.6 71.0 43.2 7.3	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 21.3 20.9 19.7 25.2 14.5	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0 141.1 78.2 7.3	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4 772.7 525.3	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4 761.9 518.1 98.4	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1 24.1 12.8 1.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.368 0.355 0.334	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26 0.24	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32 1.99 1.81 0.99	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72 10.89 12.15	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57 10.73 11.98	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35 0.34 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.0 5.7 25.4 53.8 56.9 54.6 71.0 43.2	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 20.9 19.7 25.2 14.5 2.4	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0 17.0 10.1	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0 141.1 78.2	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4 772.7 525.3 99.7	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4 761.9 518.1	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1 24.1 12.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.360 0.355 0.334	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26 0.24 0.23 0.25	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32 1.99 1.81 0.99	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72 10.89 12.15 13.63	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57 10.73 11.98 13.45	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35 0.34 0.30 0.26 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8%	0.0 4.0 5.7 25.4 53.8 56.9 54.6 71.0 43.2 7.3 33.7 355.5	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 20.9 19.7 25.2 14.5 2.4 11.0 148.3	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0 17.0 10.1 1.8 8.8 198.4	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0 141.1 78.2 7.3 33.5 478.2	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4 772.7 525.3 99.7 407.8 4451.3	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4 761.9 518.1 98.4 402.3 4390.0	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1 24.1 12.8 1.9 10.0 120.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.526 1.940 2.526 0.445 0.395 0.368 0.360 0.355 0.334	HC (g/hp-hr) 9.84 7.69 9.84 0.70 0.46 0.31 0.26 0.24 0.23 0.25	(g/hp-hr) 8.47 5.52 8.47 0.83 0.60 0.40 1.32 1.99 1.81 0.99	(g/hp-hr) 65.68 67.09 65.68 11.26 10.02 10.44 10.72 10.89 12.15 13.63	(g/hp-hr) 64.75 66.15 64.75 11.10 9.88 10.30 10.57 10.73 11.98 13.45	(g/hp-hr) 2.32 1.42 2.32 0.21 0.24 0.28 0.35 0.34 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8%	0.0 4.0 5.7 25.4 53.8 56.9 54.6 71.0 43.2 7.3 33.7 355.5	w-bsfc w-(lb/hp-hr) 0.0 7.8 14.4 11.3 20.9 19.7 25.2 14.5 2.4	w-HC w-(g/hr) 0.0 30.8 55.9 17.7 24.7 17.6 14.0 17.0 10.1 1.8 8.8	w-CO w-(g/hr) 0.0 22.1 48.1 21.1 32.1 22.7 72.0 141.1 78.2 7.3 33.5	w-(g/hr) 0.0 268.8 373.2 285.6 539.2 593.7 585.4 772.7 525.3 99.7 407.8	w-(g/hr) 0.0 265.0 367.8 281.6 531.7 585.7 577.4 761.9 518.1 98.4 402.3	w-(g/hr) 0.0 5.7 13.2 5.3 12.9 15.7 19.1 24.1 12.8 1.9

BN #9696 Test Date 3-15-99 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #3/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	19	51.0	155	156	1,342	1,311	41	DB-2	12.5%	2.4	6.4	19.4	19.5	167.8	163.9	5.1
Low Idle	13	26.3	91	67	851	832	18	Low Idle	19.0%	2.5	5.0	17.3	12.7	161.7	158.0	3.4
Idle	19	51.0	155	156	1,342	1,311	41	Idle	19.0%	3.7	9.7	29.5	29.6	255.0	249.1	7.8
N1	205	91.0	132	161	2,223	2,177	45	N1	6.5%	13.3	5.9	8.6	10.5	144.5	141.5	2.9
N2	439	172.0	190	241	4,468	4,377	100	N2	6.5%	28.5	11.2	12.4	15.7	290.4	284.5	6.5
N3	982	359.0	290	328	10,538	10,325	272	N3	5.2%	51.0	18.7	15.1	17.1	548.0	536.9	14.1
N4	1,519	540.0	355	1,282	17,134	16,787	455	N4	4.4%	66.8	23.8	15.6	56.4	753.9	738.6	20.0
N5	2,001	702.0	471	2,910	22,384	21,938	592	N5	3.8%	76.0	26.7	17.9	110.6	850.6	833.6	22.5
N6	2,884	961.0	705	4,349	35,497	34,786	750	N6	3.9%	112.5	37.5	27.5	169.6	1384.4	1356.6	29.3
N7	3,656	1,184.0	908	2,860	50,126	49,127	923	N7	3.0%	109.7	35.5	27.2	85.8	1503.8	1473.8	27.7
N8	4,208	1,370.0	1,110	3,373	51,629	50,607	1,133	N8	16.2%	681.6	221.9	179.8	546.4	8363.9	8198.3	183.5
	,	,	,	-,-	- ,	,	sum =	TOTAL	100.0%	1148.1	402.2	370.2	1073.9	14423.9	14135.0	322.9
							EPA line-haul	duty cycle weighted br	ake-specific em	nissions	0.350	0.32	0.9	12.6	12.3	0.28
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.642	8.03	8.08	69.53	67.94	2.12	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.963	6.79	5.00	63.51	62.07	1.34	Low Idle	29.9%	4.0	7.9	27.2	20.0	254.4	248.7	5.4
Idle		2.642	8.03	8.08	69.53	67.94	2.12	Idle	29.9%	5.8	15.2	46.3	46.6	401.3	392.1	12.3
N1		0.445	0.65	0.79	10.87	10.64	0.22	N1	12.4%	25.4	11.3	16.4	20.0	275.7	269.9	5.6
N2		0.392	0.43	0.55	10.19	9.98	0.23	N2	12.3%	53.9	21.2	23.4	29.6	549.6	538.3	12.3
N3		0.366	0.30	0.33	10.74	10.52	0.28	N3	5.8%	56.9	20.8	16.8	19.0	611.2	598.8	15.8
N4		0.356	0.23	0.84	11.28	11.05	0.30	N4	3.6%	54.7	19.4	12.8	46.2	616.8	604.3	16.4
N5		0.351	0.24	1.45	11.19	10.96	0.30	N5	3.6%	72.0	25.3	17.0	104.8	805.8	789.8	21.3
N6		0.333	0.24	1.51	12.31	12.06	0.26	N6	1.5%	43.3	14.4	10.6	65.2	532.5	521.8	11.3
N7		0.324	0.25	0.78	13.71	13.44	0.25	N7	0.2%	7.3	2.4	1.8	5.7	100.3	98.3	1.8
N8		0.326	0.26	0.80	12.27	12.03	0.27	N8	0.8%	33.7	11.0	8.9	27.0	413.0	404.9	9.1
								TOTAL	100.0%	357.0	148.8	181.1	384.2	4560.5	4466.8	111.1
							EPA switch du	ty cycle weighted brak	e-specific emis	sions	0.417	0.51	1.08	12.78	12.51	0.31
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

BNSF No. 9696 Smoke Test Summary

SMOKE TEST SUMMARY FOR BNSF NO. 9696

Run #	ss	30-sec	3-sec
Carb Diesel	(EM-2663	-F)	
# 1	13	15	25
# 2	12	14	22
# 3	8	10	15
Avg	11	13	21
COV	24%	20%	25%
On-Highway	Diesel (E	M-2677-F)	
# 1	9	12	21
# 2	9	12	21
# 3	15	19	28
Avg	11	14	23
COV	31%	28%	17%
Nonroad Hig	jh Sulfur	Diesel (EM-	2664-F)
# 1	13	15	28
# 2	14	18	30
# 3	10	11	19
Avg	12	15	26
COV	17%	24%	23%

updated 3/21/99 sgf

UP No. 9724 Test Summary

EPA Li	ne-Haul Duty	Cycle We	ighting Fa	ctors				EPA Sv	witcher Duty	Cycle Wei	ghting Fac	ctors			
	_	-		EPA					_	-	_	EPA			
	obs bsfc	HC	CO	NOx	KH-NOx	PM	UP 9724		obs bsfc	HC	CO	NOx	KH-NOx	PM	
Carl D	lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	GE DASH9-44CW	Coul D	lb/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	
Carb D	iesel (EM-266	3-F)					updated 06-29-99	Carb D	iesel (EM-266	ю-г)					
	0.349	0.40	1.4	11.418	11.314	0.14			0.390	0.74	2.16	11.778	11.664	0.25	
	0.350	0.41	1.3	11.325	11.197	0.14			0.394	0.77	2.02	11.992	11.865	0.28	
	0.350	0.39	1.5	11.255	11.144	0.13			0.390	0.72	2.12	11.830	11.711	0.25	
Avg	0.349	0.399	1.40	11.332	11.218	0.138		Avg	0.391	0.742	2.10	11.867	11.747	0.261	
cov	0.1%	1.6%	8.6%	0.7%	0.8%	3.6%		cov	0.6%	3.3%	3.4%	0.9%	0.9%	6.0%	
On-Hig	hway Diesel (EM-2677-	F)					On-Hig	hway Diesel	(EM-2677-	F)				
	0.353	0.41	1.5	11.555	11.432	0.15			0.393	0.71	2.17	12.321	12.221	0.27	
	0.352	0.44	1.2	12.137	12.078	0.14			0.397	0.85	1.94	12.821	12.756	0.30	
	0.351	0.43	1.4	11.774	11.654	0.13			0.392	0.80	2.11	12.642	12.520	0.24	
Avg	0.352	0.428	1.36	11.822	11.721	0.140		Avg	0.394	0.787	2.07	12.595	12.499	0.271	
cov	0.2%	3.4%	10.0%	2.5%	2.8%	5.7%		cov	0.7%	8.8%	5.8%	2.0%	2.1%	11.9%	
Nonroa	ad High Sulfu	r Diesel (E	EM-2664-F))				Nonroa	ad High Sulfu	r Diesel (E	M-2664-F))			
	0.353	0.41	1.3	12.244	12.050	0.22			0.398	0.77	1.96	13.068	12.865	0.33	
	0.351	0.42	1.3	12.432	12.390	0.21			0.395	0.76	1.94	12.977	12.929	0.32	
	0.356	0.37	1.5	12.278	12.239	0.25			0.399	0.63	2.22	13.036	12.969	0.33	
Avg	0.353	0.397	1.35	12.318	12.226	0.226		Avg	0.397	0.722	2.04	13.027	12.921	0.329	
cov	0.7%	6.9%	7.4%	0.8%	1.4%	8.5%		cov	0.5%	10.8%	7.7%	0.4%	0.4%	1.5%	
0.3% S	ulfur Diesel (I	EM-2708-F	-)					0.3% S	ulfur Diesel (EM-2708-F	-)				
	0.353	0.42	1.3	12.193	12.035	0.20			0.399	0.83	2.00	12.964	12.786	0.37	
	0.353	0.40	1.4	11.828	11.814	0.19			0.395	0.76	2.10	12.735	12.722	0.30	
	0.354	0.40	1.5	11.952	11.802	0.19			0.396	0.79	2.11	12.936	12.775	0.30	
Avg	0.353	0.408	1.38	11.991	11.884	0.191		Avg	0.397	0.793	2.07	12.879	12.761	0.323	
cov	0.1%	2.9%	7.5%	1.5%	1.1%	4.1%		cov	0.5%	4.4%	2.9%	1.0%	0.3%	11.8%	
	-1.1%	0%	3%	-8%	-8%	-39%	carb vs HS		-1.5%	3%	3%	-9%	-9%	-21%	carb vs HS
	-0.3%	8%	1%	-4%	-4%	-38%	on-hwy vs HS		-0.8%	9%	2%	-3%	-3%	-18%	on-hwy vs HS
	-0.8%	-7%	2%	-4%	-4.3%	-2%	carb vs on-hwy		-0.7%	-6%	1%	-6%	-6%	-4%	carb vs on-hwy
Note: E	EPA NOx = full	NOx corre	ection facto	or											

Note: KH NOx = only ambient air humidity NOx correction factor applied

-1.1% -2.2% 1.4% -5.5% -5.6% -28.0% carb vs 0.3% S

UP No. 9724 Test Results Using CARB Diesel Fuel

UP #9724 Test Date 11-29-98 CARB Diesel Fuel EM-2663-F Run #1/3

SwRI Proj	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ılts					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	36	45.0	76	358	942	931	62	DB-2	12.5%	4.5	5.6	9.5	44.8	117.8	116.4	7.8
Low Idle	21	25.2	291	282	311	308	49	Low Idle	19.0%	4.0	4.8	55.3	53.6	59.1	58.5	9.3
Idle	21	28.5	202	206	591	585	31	Idle	19.0%	4.0	5.4	38.4	39.1	112.3	111.1	5.9
N1	198	79.0	125	131	1,592	1,576	57	N1	6.5%	12.9	5.1	8.1	8.5	103.5	102.4	3.7
N2	499	184.0	236	411	4,502	4,458	131	N2	6.5%	32.4	12.0	15.3	26.7	292.6	289.8	8.5
N3	1,033	391.0	474	1,942	12,427	12,305	256	N3	5.2%	53.7	20.3	24.6	101.0	646.2	639.8	13.3
N4	1,552	568.0	442	4,685	19,408	19,216	339	N4	4.4%	68.3	25.0	19.4	206.1	854.0	845.5	14.9
N5	2,222	781.0	641	5,659	28,786	28,514	338	N5	3.8%	84.4	29.7	24.4	215.0	1093.9	1083.5	12.8
N6	2,938	991.0	824	5,532	36,019	35,653	374	N6	3.9%	114.6	38.6	32.1	215.7	1404.7	1390.5	14.6
N7	3,663	1,209.0	1,064	4,347	44,497	44,117	368	N7	3.0%	109.9	36.3	31.9	130.4	1334.9	1323.5	11.0
N8	4,498	1,493.0	1,381	4,410	48,647	48,223	445	N8	16.2%	728.7	241.9	223.7	714.4	7880.8	7812.1	72.1
	,	,	,	, -	-,-	-,	sum =	TOTAL	100.0%	1217.4	424.7	482.9	1755.4	13899.7	13773.1	174.0
							EPA line-haul d	uty cycle weighted br	ake-specific emi	ssions	0.349	0.40	1.4	11.4	11.3	0.14
							EPA line-haul d	uty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.250	2.11	9.94	26.17	25.87	1.72	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.200	13.86	13.43	14.81	14.65	2.33	Low Idle	29.9%	6.3	7.5	87.0	84.3	93.0	92.0	14.7
Idle		1.357	9.62	9.81	28.14	27.84	1.48	Idle	29.9%	6.3	8.5	60.4	61.6	176.7	174.8	9.3
N1		0.399	0.63	0.66	8.04	7.96	0.29	N1	12.4%	24.6	9.8	15.5	16.2	197.4	195.4	7.1
N2		0.369	0.47	0.82	9.02	8.93	0.26	N2	12.3%	61.4	22.6	29.0	50.6	553.7	548.4	16.1
N3		0.379	0.46	1.88	12.03	11.91	0.25	N3	5.8%	59.9	22.7	27.5	112.6	720.8	713.7	14.8
N4		0.366	0.28	3.02	12.51	12.38	0.22	N4	3.6%	55.9	20.4	15.9	168.7	698.7	691.8	12.2
N5		0.351	0.29	2.55	12.95	12.83	0.15	N5	3.6%	80.0	28.1	23.1	203.7	1036.3	1026.5	12.2
N6		0.337	0.28	1.88	12.26	12.14	0.13	N6	1.5%	44.1	14.9	12.4	83.0	540.3	534.8	5.6
N7		0.330	0.29	1.19	12.15	12.04	0.10	N7	0.2%	7.3	2.4	2.1	8.7	89.0	88.2	0.7
N8		0.332	0.31	0.98	10.82	10.72	0.10	N8	0.8%	36.0	11.9	11.0	35.3	389.2	385.8	3.6
								TOTAL	100.0%	381.6	149.0	284.0	824.7	4495.1	4451.3	96.2
							EPA switch duty	cycle weighted brak	e-specific emiss	ions	0.390	0.74	2.16	11.78	11.66	0.25

UP #9724 Test Date 12-03-98 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Proj	ect 08-2062	-001							۱ EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	25	42.0	285	326	838	829	56	DB-2	12.5%	3.1	5.3	35.6	40.8	104.8	103.7	7.0
Low Idle	12	21.4	308	251	242	240	51	Low Idle	19.0%	2.3	4.1	58.5	47.7	46.0	45.5	9.7
Idle	12	28.0	204	227	565	559	42	Idle	19.0%	2.3	5.3	38.8	43.1	107.4	106.2	8.0
N1	197	82.3	154	147	1,673	1,656	75	N1	6.5%	12.8	5.3	10.0	9.6	108.7	107.7	4.9
N2	497	186.9	233	447	4,637	4,590	157	N2	6.5%	32.3	12.1	15.1	29.1	301.4	298.3	10.2
N3	1,037	390.6	400	1,737	12,517	12,389	245	N3	5.2%	53.9	20.3	20.8	90.3	650.9	644.2	12.7
N4	1,548	565.5	428	4,320	19,027	18,824	343	N4	4.4%	68.1	24.9	18.8	190.1	837.2	828.3	15.1
N5	2,227	780.0	661	4,936	29,510	29,202	369	N5	3.8%	84.6	29.6	25.1	187.6	1121.4	1109.7	14.0
N6	2,943	987.0	842	4,911	36,749	36,329	332	N6	3.9%	114.8	38.5	32.8	191.5	1433.2	1416.8	12.9
N7	3,662	1,209.5	1,013	4,029	43,674	43,164	312	N7	3.0%	109.9	36.3	30.4	120.9	1310.2	1294.9	9.4
N8	4,501	1,497.0	1,277	3,565	47,646	47,094	382	N8	16.2%	729.2	242.5	206.9	577.5	7718.7	7629.3	61.9
							sum =	TOTAL	100.0%	1213.3	424.3	492.9	1528.1	13739.8	13584.7	165.8
							EPA line-haul duty	cvcle weighted bra	ake-specific emis	sions	0.350	0.41	1.3	11.3	11.2	0.14
							EPA line-haul duty					1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual	Notch brake	-specific em	issions								,	Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP		w-HC	00	NO		w-PM
Notch										W-DHP	w-bsfc	W-HC	w-CO	w-NOx	w-KH-NOx	
DB-2		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF	W-DHP						
DD-2		(lb/hp-hr) 1.680	(g/hp-hr) 11.40	(g/hp-hr) 13.04	(g/hp-hr) 33.52	(g/hp-hr) 33.18	(g/hp-hr) 2.24	Notch DB-2		W-BHP 0.0	w-bstc w-(lb/hp-hr) 0.0	w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-(g/hr) 0.0
Low Idle									WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
		1.680	11.40	13.04	33.52	33.18	2.24	DB-2	WF 0.0%	0.0	w-(lb/hp-hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Low Idle		1.680 1.783	11.40 25.67	13.04 20.92	33.52 20.17	33.18 19.97	2.24 4.25	DB-2 Low Idle	WF 0.0% 29.9%	0.0 3.6	w-(lb/hp-hr) 0.0 6.4	w-(g/hr) 0.0 92.1	w-(g/hr) 0.0 75.0	w-(g/hr) 0.0 72.4	w-(g/hr) 0.0 71.7	w-(g/hr) 0.0 15.2
Low Idle Idle		1.680 1.783 2.333	11.40 25.67 17.00	13.04 20.92 18.92	33.52 20.17 47.08	33.18 19.97 46.59	2.24 4.25 3.50	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 3.6 3.6	w-(lb/hp-hr) 0.0 6.4 8.4	w-(g/hr) 0.0 92.1 61.0	w-(g/hr) 0.0 75.0 67.9	w-(g/hr) 0.0 72.4 168.9	w-(g/hr) 0.0 71.7 167.2	w-(g/hr) 0.0 15.2 12.6
Low Idle Idle N1		1.680 1.783 2.333 0.418	11.40 25.67 17.00 0.78	13.04 20.92 18.92 0.75	33.52 20.17 47.08 8.49	33.18 19.97 46.59 8.41	2.24 4.25 3.50 0.38	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 3.6 3.6 24.4	w-(lb/hp-hr) 0.0 6.4 8.4 10.2	w-(g/hr) 0.0 92.1 61.0 19.1	w-(g/hr) 0.0 75.0 67.9 18.2	w-(g/hr) 0.0 72.4 168.9 207.5	w-(g/hr) 0.0 71.7 167.2 205.4	w-(g/hr) 0.0 15.2 12.6 9.3
Low Idle Idle N1 N2		1.680 1.783 2.333 0.418 0.376	11.40 25.67 17.00 0.78 0.47	13.04 20.92 18.92 0.75 0.90	33.52 20.17 47.08 8.49 9.33	33.18 19.97 46.59 8.41 9.24	2.24 4.25 3.50 0.38 0.32	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.6 3.6 24.4 61.1	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0	w-(g/hr) 0.0 92.1 61.0 19.1 28.7	w-(g/hr) 0.0 75.0 67.9 18.2 55.0	w-(g/hr) 0.0 72.4 168.9 207.5 570.4	w-(g/hr) 0.0 71.7 167.2 205.4 564.6	w-(g/hr) 0.0 15.2 12.6 9.3 19.3
Low Idle Idle N1 N2 N3		1.680 1.783 2.333 0.418 0.376 0.377	11.40 25.67 17.00 0.78 0.47 0.39	13.04 20.92 18.92 0.75 0.90 1.68	33.52 20.17 47.08 8.49 9.33 12.07	33.18 19.97 46.59 8.41 9.24 11.95	2.24 4.25 3.50 0.38 0.32 0.24	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.6 3.6 24.4 61.1 60.1	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2
Low Idle Idle N1 N2 N3 N4		1.680 1.783 2.333 0.418 0.376 0.377 0.365	11.40 25.67 17.00 0.78 0.47 0.39 0.28	13.04 20.92 18.92 0.75 0.90 1.68 2.79	33.52 20.17 47.08 8.49 9.33 12.07 12.29	33.18 19.97 46.59 8.41 9.24 11.95 12.16	2.24 4.25 3.50 0.38 0.32 0.24 0.22	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.6 3.6 24.4 61.1 60.1 55.7	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7 20.4	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2 15.4	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7 155.5	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0 685.0	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6 677.7	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2 12.3
Low Idle Idle N1 N2 N3 N4 N5		1.680 1.783 2.333 0.418 0.376 0.377 0.365 0.350	11.40 25.67 17.00 0.78 0.47 0.39 0.28 0.30	13.04 20.92 18.92 0.75 0.90 1.68 2.79 2.22	33.52 20.17 47.08 8.49 9.33 12.07 12.29 13.25	33.18 19.97 46.59 8.41 9.24 11.95 12.16 13.11	2.24 4.25 3.50 0.38 0.32 0.24 0.22 0.17	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.6 3.6 24.4 61.1 60.1 55.7 80.2	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7 20.4 28.1	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2 15.4 23.8	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7 155.5	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0 685.0 1062.4	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6 677.7 1051.3	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2 12.3 13.3
Low Idle Idle N1 N2 N3 N4 N5		1.680 1.783 2.333 0.418 0.376 0.377 0.365 0.350 0.335	11.40 25.67 17.00 0.78 0.47 0.39 0.28 0.30 0.29	13.04 20.92 18.92 0.75 0.90 1.68 2.79 2.22 1.67	33.52 20.17 47.08 8.49 9.33 12.07 12.29 13.25 12.49	33.18 19.97 46.59 8.41 9.24 11.95 12.16 13.11 12.34	2.24 4.25 3.50 0.38 0.32 0.24 0.22 0.17 0.11	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.6 3.6 24.4 61.1 60.1 55.7 80.2 44.1	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7 20.4 28.1 14.8	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2 15.4 23.8 12.6	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7 155.5 177.7 73.7	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0 685.0 1062.4 551.2	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6 677.7 1051.3 544.9	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2 12.3 13.3 5.0
Low Idle Idle N1 N2 N3 N4 N5 N6		1.680 1.783 2.333 0.418 0.376 0.377 0.365 0.350 0.335	11.40 25.67 17.00 0.78 0.47 0.39 0.28 0.30 0.29	13.04 20.92 18.92 0.75 0.90 1.68 2.79 2.22 1.67 1.10	33.52 20.17 47.08 8.49 9.33 12.07 12.29 13.25 12.49 11.93	33.18 19.97 46.59 8.41 9.24 11.95 12.16 13.11 12.34 11.79	2.24 4.25 3.50 0.38 0.32 0.24 0.22 0.17 0.11 0.09	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.6 3.6 24.4 61.1 60.1 55.7 80.2 44.1 7.3	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7 20.4 28.1 14.8 2.4	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2 15.4 23.8 12.6 2.0	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7 155.5 177.7 73.7 8.1	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0 685.0 1062.4 551.2 87.3	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6 677.7 1051.3 544.9 86.3	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2 12.3 13.3 5.0 0.6
Low Idle Idle N1 N2 N3 N4 N5 N6		1.680 1.783 2.333 0.418 0.376 0.377 0.365 0.350 0.335	11.40 25.67 17.00 0.78 0.47 0.39 0.28 0.30 0.29	13.04 20.92 18.92 0.75 0.90 1.68 2.79 2.22 1.67 1.10	33.52 20.17 47.08 8.49 9.33 12.07 12.29 13.25 12.49 11.93	33.18 19.97 46.59 8.41 9.24 11.95 12.16 13.11 12.34 11.79	2.24 4.25 3.50 0.38 0.32 0.24 0.22 0.17 0.11 0.09	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 3.6 3.6 24.4 61.1 60.1 55.7 80.2 44.1 7.3 36.0 376.3	w-(lb/hp-hr) 0.0 6.4 8.4 10.2 23.0 22.7 20.4 28.1 14.8 2.4 12.0	w-(g/hr) 0.0 92.1 61.0 19.1 28.7 23.2 15.4 23.8 12.6 2.0	w-(g/hr) 0.0 75.0 67.9 18.2 55.0 100.7 155.5 177.7 73.7 8.1 28.5	w-(g/hr) 0.0 72.4 168.9 207.5 570.4 726.0 685.0 1062.4 551.2 87.3 381.2	w-(g/hr) 0.0 71.7 167.2 205.4 564.6 718.6 677.7 1051.3 544.9 86.3 376.8	w-(g/hr) 0.0 15.2 12.6 9.3 19.3 14.2 12.3 13.3 5.0 0.6 3.1

UP #9724 Test Date 12-04-98 CARB Diesel Fuel EM-2663-F Run #3/3

UP #9724	rest Date	12-04-96 C	ARD Diesei i	-uei ⊑ivi-∠oo	3-F Hull #3/3											
SwRI Proj	ect 08-2062	-001								Weighted Res	ults					
									EPA Line-Haul							
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	24	42.0	304	318	872	862	55	DB-2	12.5%	3.0	5.3	38.0	39.8	109.0	107.8	6.9
Low Idle	11	20.0	270	228	238	236	44	Low Idle	19.0%	2.1	3.8	51.3	43.3	45.2	44.9	8.4
Idle	11	24.9	194	198	520	515	35	Idle	19.0%	2.1	4.7	36.9	37.6	98.8	97.9	6.7
N1	195	79.0	135	141	1,661	1,644	73	N1	6.5%	12.7	5.1	8.8	9.2	108.0	106.9	4.7
N2	497	185.0	213	415	4,722	4,671	132	N2	6.5%	32.3	12.0	13.8	27.0	306.9	303.6	8.6
N3	1,035	389.5	418	1,730	12,386	12,260	221	N3	5.2%	53.8	20.3	21.7	90.0	644.1	637.5	11.5
N4	1,552	565.7	422	4,726	18,552	18,365	319	N4	4.4%	68.3	24.9	18.6	207.9	816.3	808.1	14.0
N5	2,224	780.0	648	5,463	28,512	28,224	344	N5	3.8%	84.5	29.6	24.6	207.6	1083.5	1072.5	13.1
N6	2,941	988.0	841	5,535	36,456	36,091	326	N6	3.9%	114.7	38.5	32.8	215.9	1421.8	1407.5	12.7
N7	3,659	1,213.2	1,024	4,993	42,276	41,873	340	N7	3.0%	109.8	36.4	30.7	149.8	1268.3	1256.2	10.2
N8	4,499	1,500.0	1,239	4,783	47,778	47,312	399	N8	16.2%	728.8	243.0	200.7	774.8	7740.0	7664.5	64.6
							sum =	TOTAL	100.0%	1212.1	423.7	477.9	1802.8	13641.8	13507.4	161.4
							EPA line-haul d	uty cycle weighted bra	ake-specific emis	ssions	0.350	0.39	1.5	11.3	11.1	0.13
							EPA line-haul d	uty cycle maximum Ti	er 0			1.00	5.0	9.5	9.5	0.60
								EP	A Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.750	12.67	13.25	36.33	35.93	2.29	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.818	24.55	20.73	21.64	21.46	4.00	Low Idle	29.9%	3.3	6.0	80.7	68.2	71.2	70.6	13.2
Idle		2.264	17.64	18.00	47.27	46.85	3.18	Idle	29.9%	3.3	7.4	58.0	59.2	155.5	154.1	10.5
N1		0.405	0.69	0.72	8.52	8.43	0.37	N1	12.4%	24.2	9.8	16.7	17.5	206.0	203.9	9.1
N2		0.372	0.43	0.84	9.50	9.40	0.27	N2	12.3%	61.1	22.8	26.2	51.0	580.8	574.6	16.2
N3		0.376	0.40	1.67	11.97	11.85	0.21	N3	5.8%	60.0	22.6	24.2	100.3	718.4	711.1	12.8
N4		0.364	0.27	3.05	11.95	11.83	0.21	N4	3.6%	55.9	20.4	15.2	170.1	667.9	661.2	11.5
N5		0.351	0.29	2.46	12.82	12.69	0.15	N5	3.6%	80.1	28.1	23.3	196.7	1026.4	1016.1	12.4
N6		0.336	0.29	1.88	12.40	12.27	0.11	N6	1.5%	44.1	14.8	12.6	83.0	546.8	541.4	4.9
N7		0.332	0.28	1.36	11.55	11.44	0.09	N7	0.2%	7.3	2.4	2.0	10.0	84.6	83.7	0.7
N8		0.333	0.28	1.06	10.62	10.52	0.09	N8	0.8%	36.0	12.0	9.9	38.3	382.2	378.5	3.2
								TOTAL	100.0%	375.3	146.3	269.0	794.3	4439.7	4395.0	94.4
							EPA switch duty	y cycle weighted brake	e-specific emissi	ions	0.390	0.72	2.12	11.83	11.71	0.25
							EPA switch cyc	le maximum Tier 0				2.10	8.0	14.0	14.0	0.72

 $\ \, \textbf{UP No. 9724 Test Results Using On-Highway Diesel Fuel} \\$

UP #9724 Test Date 11-29-98 On-Highway Diesel Fuel EM-2677-F Run #1/3

SwRI Proj	ect 08-2062-	001							EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	26	46.5	337	391	1011	1,002	75	DB-2	12.5%	3.3	5.8	42.1	48.9	126.4	125.2	9.4
Low Idle	14	21.0	268	237	267	265	51	Low Idle	19.0%	2.7	4.0	50.9	45.0	50.7	50.4	9.7
Idle	14	24.8	194	234	550	545	33	Idle	19.0%	2.7	4.7	36.9	44.5	104.5	103.5	6.3
N1	196	82.0	141	146	1,817	1,802	88	N1	6.5%	12.7	5.3	9.2	9.5	118.1	117.1	5.7
N2	500	189.0	242	449	4,952	4,911	165	N2	6.5%	32.5	12.3	15.7	29.2	321.9	319.2	10.7
N3	1,041	394.0	391	1,705	13,310	13,205	224	N3	5.2%	54.1	20.5	20.3	88.7	692.1	686.7	11.6
N4	1,550	569.0	385	4,186	19,349	19,208	284	N4	4.4%	68.2	25.0	16.9	184.2	851.4	845.1	12.5
N5	2,223	789.0	612	5,891	29,866	29,647	332	N5	3.8%	84.5	30.0	23.3	223.9	1134.9	1126.6	12.6
N6	2,941	1,003.0	822	6,438	37,091	36,815	362	N6	3.9%	114.7	39.1	32.1	251.1	1446.5	1435.8	14.1
N7	3,660	1,221.0	1,094	4,858	44,239	43,902	382	N7	3.0%	109.8	36.6	32.8	145.7	1327.2	1317.1	11.5
N8	4,499	1,514.0	1,357	4,552	48,482	47,848	450	N8	16.2%	728.8	245.3	219.8	737.4	7854.1	7751.4	72.9
	,	,	,	ŕ	,	,	sum =	TOTAL	100.0%	1214.0	428.7	500.0	1808.0	14027.8	13878.1	177.0
							EPA line-haul	duty cycle weighted b	orake-specific em	nissions	0.353	0.41	1.5	11.6	11.4	0.15
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	EPA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.788	12.96	15.04	38.88	38.53	2.88	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.500	19.14	16.93	19.07	18.94	3.64	Low Idle	29.9%	4.2	6.3	80.1	70.9	79.8	79.3	15.2
Idle		1.771	13.86	16.71	39.29	38.92	2.36	Idle	29.9%	4.2	7.4	58.0	70.0	164.5	162.9	9.9
N1		0.418	0.72	0.74	9.27	9.19	0.45	N1	12.4%	24.3	10.2	17.5	18.1	225.3	223.4	10.9
N2		0.378	0.48	0.90	9.90	9.82	0.33	N2	12.3%	61.5	23.2	29.8	55.2	609.1	604.0	20.3
N3		0.378	0.38	1.64	12.79	12.69	0.22	N3	5.8%	60.4	22.9	22.7	98.9	772.0	765.9	13.0
N4		0.367	0.25	2.70	12.48	12.39	0.18	N4	3.6%	55.8	20.5	13.9	150.7	696.6	691.5	10.2
N5		0.355	0.28	2.65	13.43	13.34	0.15	N5	3.6%	80.0	28.4	22.0	212.1	1075.2	1067.3	12.0
N6		0.341	0.28	2.19	12.61	12.52	0.12	N6	1.5%	44.1	15.0	12.3	96.6	556.4	552.2	5.4
N7		0.334	0.30	1.33	12.09	12.00	0.10	N7	0.2%	7.3	2.4	2.2	9.7	88.5	87.8	8.0
N8		0.337	0.30	1.01	10.78	10.64	0.10	N8	0.8%	36.0	12.1	10.9	36.4	387.9	382.8	3.6
								TOTAL	100.0%	377.8	148.4	269.3	818.5	4655.1	4617.2	101.3
								ity cycle weighted bra	ke-specific emis	sions	0.393	0.71	2.17	12.32	12.22	0.27
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9724 Test Date 12-1-98 On-Highway Diesel Fuel EM-2677-F Run #2/3

SwRI Proje	ect 08-2062-	-001							\ EPA Line-Haul	Weighted Resi	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	23	41.5	328	428	923	917	79	DB-2	12.5%	2.9	5.2	41.0	53.5	115.4	114.7	9.9
Low Idle	12	22.3	379	303	282	281	63	Low Idle	19.0%	2.3	4.2	72.0	57.6	53.6	53.3	12.0
Idle	12	27.0	214	289	617	613	39	Idle	19.0%	2.3	5.1	40.7	54.9	117.2	116.5	7.4
N1	197	83.4	165	159	1,935	1,924	108	N1	6.5%	12.8	5.4	10.7	10.3	125.8	125.1	7.0
N2	495	188.4	249	414	5,074	5,047	207	N2	6.5%	32.2	12.2	16.2	26.9	329.8	328.1	13.5
N3	1,032	393.0	420	1,452	13,516	13,452	249	N3	5.2%	53.7	20.4	21.8	75.5	702.8	699.5	12.9
N4	1,549	568.0	476	3,570	20,069	19,965	303	N4	4.4%	68.2	25.0	20.9	157.1	883.0	878.5	13.3
N5	2,223	784.5	677	4,462	30,682	30,523	314	N5	3.8%	84.5	29.8	25.7	169.6	1165.9	1159.9	11.9
N6	2,942	993.8	810	4,726	37,791	37,618	313	N6	3.9%	114.7	38.8	31.6	184.3	1473.8	1467.1	12.2
N7	3,663	1,215.8	1,049	3,757	44,999	44,785	336	N7	3.0%	109.9	36.5	31.5	112.7	1350.0	1343.5	10.1
N8	4,490	1,504.5	1,357		393	N8	16.2%	727.4	243.7	219.8	573.0	8377.2	8336.3	63.7		
							sum =	TOTAL	100.0%	1210.7	426.4	532.0	1475.4	14694.6	14622.4	173.9
							EPA line-haul duty	cycle weighted br	ake-specific emis	sions	0.352	0.44	1.2	12.1	12.1	0.14
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
												Material D				
Individual	Notch brake	-specific em	issions									Weighted R	esults			
Individual	Notch brake	-specific em bsfc	issions HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	esuits w-CO	w-NOx	w-KH-NOx	w-PM
	Notch brake	bsfc	HC					Notch	EPA WF	w-BHP	w-bsfc	w-HC	w-CO			
Notch	Notch brake		HC (g/hp-hr)	CO (g/hp-hr) 18.61	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch DB-2	WF			Ü		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-(g/hr)
Notch	Notch brake	bsfc (lb/hp-hr)	HC	(g/hp-hr)						w-BHP 0.0 3.6	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.804	HC (g/hp-hr) 14.26	(g/hp-hr) 18.61	(g/hp-hr) 40.13	(g/hp-hr) 39.89	(g/hp-hr) 3.43	DB-2	WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.804 1.858	HC (g/hp-hr) 14.26 31.58	(g/hp-hr) 18.61 25.25	(g/hp-hr) 40.13 23.50	(g/hp-hr) 39.89 23.39	(g/hp-hr) 3.43 5.25	DB-2 Low Idle	WF 0.0% 29.9%	0.0 3.6	w-bsfc w-(lb/hp-hr) 0.0 6.7	w-HC w-(g/hr) 0.0 113.3	w-CO w-(g/hr) 0.0 90.6	w-(g/hr) 0.0 84.3	w-(g/hr) 0.0 83.9	w-(g/hr) 0.0 18.8
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250	HC (g/hp-hr) 14.26 31.58 17.83	(g/hp-hr) 18.61 25.25 24.08	(g/hp-hr) 40.13 23.50 51.42	(g/hp-hr) 39.89 23.39 51.09	(g/hp-hr) 3.43 5.25 3.25	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 3.6 3.6	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1	w-HC w-(g/hr) 0.0 113.3 64.0	w-CO w-(g/hr) 0.0 90.6 86.4	w-(g/hr) 0.0 84.3 184.5	w-(g/hr) 0.0 83.9 183.3	w-(g/hr) 0.0 18.8 11.7
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423	HC (g/hp-hr) 14.26 31.58 17.83 0.84	(g/hp-hr) 18.61 25.25 24.08 0.81	(g/hp-hr) 40.13 23.50 51.42 9.82	(g/hp-hr) 39.89 23.39 51.09 9.77	(g/hp-hr) 3.43 5.25 3.25 0.55	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 3.6 3.6 24.4	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3	w-HC w-(g/hr) 0.0 113.3 64.0 20.5	w-CO w-(g/hr) 0.0 90.6 86.4 19.7	w-(g/hr) 0.0 84.3 184.5 239.9	w-(g/hr) 0.0 83.9 183.3 238.6	w-(g/hr) 0.0 18.8 11.7 13.4
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.6 3.6 24.4 60.9	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9	w-(g/hr) 0.0 84.3 184.5 239.9 624.1	w-(g/hr) 0.0 83.9 183.3 238.6 620.8	w-(g/hr) 0.0 18.8 11.7 13.4 25.5
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.381	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.6 3.6 24.4 60.9 59.9	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.381 0.367	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41 0.31	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41 2.30	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10 12.96	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03 12.89	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24 0.20	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.6 3.6 24.4 60.9 59.9 55.8	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8 20.4	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4 17.1	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2 128.5	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9 722.5	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2 718.8	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4 10.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.381 0.367 0.353	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41 0.31 0.30	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41 2.30 2.01	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10 12.96 13.80	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03 12.89 13.73	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24 0.20 0.14	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.6 3.6 24.4 60.9 59.9 55.8 80.0	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8 20.4 28.2	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4 17.1 24.4	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2 128.5 160.6	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9 722.5 1104.6	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2 718.8 1098.8	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4 10.9 11.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.367 0.353 0.338	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41 0.31 0.30 0.28	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41 2.30 2.01 1.61	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10 12.96 13.80 12.85	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03 12.89 13.73 12.79	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24 0.20 0.14	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.6 3.6 24.4 60.9 59.9 55.8 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8 20.4 28.2 14.9	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4 17.1 24.4 12.2	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2 128.5 160.6 70.9	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9 722.5 1104.6 566.9	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2 718.8 1098.8 564.3	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4 10.9 11.3 4.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.367 0.353 0.338 0.332	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41 0.31 0.30 0.28 0.29	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41 2.30 2.01 1.61	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10 12.96 13.80 12.85 12.28	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03 12.89 13.73 12.79 12.23	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24 0.20 0.14 0.11 0.09	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.6 3.6 24.4 60.9 59.9 55.8 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8 20.4 28.2 14.9 2.4	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4 17.1 24.4 12.2 2.1	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2 128.5 160.6 70.9 7.5	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9 722.5 1104.6 566.9 90.0	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2 718.8 1098.8 564.3 89.6	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4 10.9 11.3 4.7 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.804 1.858 2.250 0.423 0.381 0.367 0.353 0.338 0.332	HC (g/hp-hr) 14.26 31.58 17.83 0.84 0.50 0.41 0.31 0.30 0.28 0.29	(g/hp-hr) 18.61 25.25 24.08 0.81 0.84 1.41 2.30 2.01 1.61	(g/hp-hr) 40.13 23.50 51.42 9.82 10.25 13.10 12.96 13.80 12.85 12.28	(g/hp-hr) 39.89 23.39 51.09 9.77 10.20 13.03 12.89 13.73 12.79 12.23	(g/hp-hr) 3.43 5.25 3.25 0.55 0.42 0.24 0.20 0.14 0.11 0.09 0.09	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.6 3.6 24.4 60.9 59.9 55.8 80.0 44.1 7.3 35.9 375.5	w-bsfc w-(lb/hp-hr) 0.0 6.7 8.1 10.3 23.2 22.8 20.4 28.2 14.9 2.4	w-HC w-(g/hr) 0.0 113.3 64.0 20.5 30.6 24.4 17.1 24.4 12.2 2.1 10.9	w-CO w-(g/hr) 0.0 90.6 86.4 19.7 50.9 84.2 128.5 160.6 70.9 7.5 28.3	w-(g/hr) 0.0 84.3 184.5 239.9 624.1 783.9 722.5 1104.6 566.9 90.0 413.7	w-(g/hr) 0.0 83.9 183.3 238.6 620.8 780.2 718.8 1098.8 564.3 89.6 411.7	w-(g/hr) 0.0 18.8 11.7 13.4 25.5 14.4 10.9 11.3 4.7 0.7 3.1

UP #9724 Test Date 12-03-98 On-Highway Diesel Fuel EM-2677-F Run #3/3

SwRI Proj	ect 08-2062-	-001							EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	33	44.0	360	366	940	930	57	DB-2	12.5%	4.1	5.5	45.0	45.8	117.5	116.3	7.1
Low Idle	16	22.0	309	243	285	282	53	Low Idle	19.0%	3.0	4.2	58.7	46.2	54.2	53.6	10.1
Idle	16	26.0	223	223	555	550	35	Idle	19.0%	3.0	4.9	42.4	42.4	105.5	104.4	6.7
N1	196	81.0	150	143	1,779	1,762	65	N1	6.5%	12.7	5.3	9.8	9.3	115.6	114.5	4.2
N2	496	188.0	226	428	4,970	4,924	118	N2	6.5%	32.2	12.2	14.7	27.8	323.1	320.1	7.7
N3	1,034	392.0	486	1,713	13,170	13,049	217	N3	5.2%	53.8	20.4	25.3	89.1	684.8	678.6	11.3
N4	1,555	569.0	499	5,054	22,335	22,114	282	N4	4.4%	68.4	25.0	22.0	222.4	982.7	973.0	12.4
N5	2,224	784.0	645	5,171	29,822	29,537	292	N5	3.8%	84.5	29.8	24.5	196.5	1133.2	1122.4	11.1
N6	2,946	994.0	910	5,355	38,472	38,105	329	N6	3.9%	114.9	38.8	35.5	208.8	1500.4	1486.1	12.8
N7	3,662	1,220.0	1,086	4,381	44,515	44,067	349	N7	3.0%	109.9	36.6	32.6	131.4	1335.5	1322.0	10.5
N8	4,498	1,509.0	1,337	4,071	49,114	48,593	403	N8	16.2%	728.7	244.5	216.6	659.5	7956.5	7872.1	65.3
							sum =	TOTAL	100.0%	1215.3	427.1	526.9	1679.1	14308.9	14163.0	159.1
							EPA line-haul du	ity cycle weighted b	rake-specific emi	issions	0.351	0.43	1.4	11.8	11.7	0.13
							EPA line-haul du	ıty cycle maximum 1	ier 0			1.00	5.0	9.5	9.5	0.60
								Е	PA Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.333	10.91	11.09	28.48	28.18	1.73	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.375	19.31	15.19	17.81	17.64	3.31	Low Idle	29.9%	4.8	6.6	92.4	72.7	85.2	84.4	15.8
Idle		1.625	13.94	13.94	34.69	34.35	2.19	Idle	29.9%	4.8	7.8	66.7	66.7	165.9	164.3	10.5
N1		0.413	0.77	0.73	9.08	8.99	0.33	N1	12.4%	24.3	10.0	18.6	17.7	220.6	218.5	8.1
N2		0.379	0.46	0.86	10.02	9.93	0.24	N2	12.3%	61.0	23.1	27.8	52.6	611.3	605.6	14.5
N3		0.379	0.47	1.66	12.74	12.62	0.21	N3	5.8%	60.0	22.7	28.2	99.4	763.9	756.9	12.6
N4		0.366	0.32	3.25	14.36	14.22	0.18	N4	3.6%	56.0	20.5	18.0	181.9	804.1	796.1	10.2
N5		0.353	0.29	2.33	13.41	13.28	0.13	N5	3.6%	80.1	28.2	23.2	186.2	1073.6	1063.3	10.5
N6		0.337	0.31	1.82	13.06	12.93	0.11	N6	1.5%	44.2	14.9	13.7	80.3	577.1	571.6	4.9
N7		0.333	0.30	1.20	12.16	12.03	0.10	N7	0.2%	7.3	2.4	2.2	8.8	89.0	88.1	0.7
N8		0.335	0.30	0.91	10.92	10.80	0.09	N8	0.8%	36.0	12.1	10.7	32.6	392.9	388.7	3.2
								TOTAL	100.0%	378.4	148.4	301.4	798.8	4783.6	4737.6	91.0
							EPA switch duty	cycle weighted brak	ke-specific emiss	sions	0.392	0.80	2.11	12.64	12.52	0.24
							EPA switch cycle	e maximum Tier 0	•			2.10	8.0	14.0	14.0	0.72

UP No. 9724 Test Results Using High-Sulfur Diesel Fuel

UP #9724 Test Date 11-30-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/3

SwRI Proje	ect 08-2062-	-001								Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	26	39.8	289	338	854	841	72	DB-2	12.5%	3.3	5.0	36.1	42.3	106.8	105.2	9.0
Low Idle	13	22.7	283	279	267	263	60	Low Idle	19.0%	2.5	4.3	53.8	53.0	50.7	49.9	11.4
Idle	12	28.3	218	257	625	616	53	Idle	19.0%	2.3	5.4	41.4	48.8	118.8	117.0	10.1
N1	194	80.4	145	136	1,991	1,963	88	N1	6.5%	12.6	5.2	9.4	8.8	129.4	127.6	5.7
N2	498	187.2	255	400	5,179	5,104	167	N2	6.5%	32.4	12.2	16.6	26.0	336.6	331.8	10.9
N3	1,035	394.0	474	1,485	14,024	13,802	261	N3	5.2%	53.8	20.5	24.6	77.2	729.2	717.7	13.6
N4	1,548	573.0	448	3,962	20,088	19,755	355	N4	4.4%	68.1	25.2	19.7	174.3	883.9	869.2	15.6
N5	2,225	787.2	644	4,566	31,466	30,985	415	N5	3.8%	84.6	29.9	24.5	173.5	1195.7	1177.4	15.8
N6	2,942	998.0	817	5,308	39,221	38,604	503	N6	3.9%	114.7	38.9	31.9	207.0	1529.6	1505.5	19.6
N7	3,662	1,220.4	1,081	4,248	46,251	45,540	592	N7	3.0%	109.9	36.6	32.4	127.4	1387.5	1366.2	17.8
N8	4,500	1,509.6	1,255	3,828	51,758	50,925	850	N8	16.2%	729.0	244.6	203.3	620.1	8384.8	8249.9	137.7
							sum =	TOTAL	100.0%	1213.1	427.8	493.8	1558.6	14853.1	14617.5	267.1
							EPA line-haul d	uty cycle weighted br	ake-specific emi	ssions	0.353	0.41	1.3	12.2	12.1	0.22
							EPA line-haul d	uty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.531	11.12	13.00	32.85	32.36	2.77	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.746	21.77	21.46	20.54	20.22	4.62	Low Idle	29.9%	3.9	6.8	84.6	83.4	79.8	78.6	17.9
Idle		2.358	18.17	21.42	52.08	51.32	4.42	Idle	29.9%	3.6	8.5	65.2	76.8	186.9	184.1	15.8
N1		0.414	0.75	0.70	10.26	10.12	0.45	N1	12.4%	24.1	10.0	18.0	16.9	246.9	243.4	10.9
N2		0.376	0.51	0.80	10.40	10.25	0.34	N2	12.3%	61.3	23.0	31.4	49.2	637.0	627.8	20.5
N3		0.381	0.46	1.43	13.55	13.34	0.25	N3	5.8%	60.0	22.9	27.5	86.1	813.4	800.5	15.1
N4		0.370	0.29	2.56	12.98	12.76	0.23	N4	3.6%	55.7	20.6	16.1	142.6	723.2	711.2	12.8
N5		0.354	0.29	2.05	14.14	13.93	0.19	N5	3.6%	80.1	28.3	23.2	164.4	1132.8	1115.4	14.9
N6		0.339	0.28	1.80	13.33	13.12	0.17	N6	1.5%	44.1	15.0	12.3	79.6	588.3	579.1	7.5
N7		0.333	0.30	1.16	12.63	12.44	0.16	N7	0.2%	7.3	2.4	2.2	8.5	92.5	91.1	1.2
N8		0.335	0.28	0.85	11.50	11.32	0.19	N8	0.8%	36.0	12.1	10.0	30.6	414.1	407.4	6.8
								TOTAL	100.0%	376.1	149.6	290.4	738.2	4914.8	4838.7	123.6
							EPA switch duty	cycle weighted brak	e-specific emiss	ions	0.398	0.77	1.96	13.07	12.87	0.33
								le maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9724 Test Date 12-1-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/3

SwRI Proj	ect 08-2062	-001	ŭ						EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	33	47.3	356	411	1,013	1,009	89	DB-2	12.5%	4.1	5.9	44.5	51.4	126.6	126.1	11.1
Low Idle	16	22.0	286	259	245	244	61	Low Idle	19.0%	3.0	4.2	54.3	49.2	46.6	46.3	11.6
Idle	12	25.6	202	222	554	552	47	Idle	19.0%	2.3	4.9	38.4	42.2	105.3	104.8	8.9
N1	193	82.3	143	146	2,012	2,003	81	N1	6.5%	12.5	5.3	9.3	9.5	130.8	130.2	5.3
N2	498	188.4	260	428	5,206	5,187	159	N2	6.5%	32.4	12.2	16.9	27.8	338.4	337.2	10.3
N3	1,033	396.0	460	1,585	13,829	13,775	279	N3	5.2%	53.7	20.6	23.9	82.4	719.1	716.3	14.5
N4	1,548	568.5	467	3,971	20,018	19,943	385	N4	4.4%	68.1	25.0	20.5	174.7	880.8	877.5	16.9
N5	2,225	789.6	635	4,491	31,592	31,481	432	N5	3.8%	84.6	30.0	24.1	170.7	1200.5	1196.3	16.4
N6	2,939	993.6	800	5,230	38,633	38,504	480	N6	3.9%	114.6	38.8	31.2	204.0	1506.7	1501.6	18.7
N7	3,662	1,218.0	1,011	5,264	46,990	46,848	604	N7	3.0%	109.9	36.5	30.3	157.9	1409.7	1405.5	18.1
N8	4,502	1,501.2	1,323	3,753	53,305	53,127	762	N8	16.2%	729.3	243.2	214.3	608.0	8635.4	8606.5	123.4
	,	,	,	·	,	ŕ	sum =	TOTAL	100.0%	1214.5	426.6	507.9	1577.8	15099.8	15048.2	255.4
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.351	0.42	1.3	12.4	12.4	0.21
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.433	10.79	12.45	30.70	30.56	2.70	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.375	17.88	16.19	15.31	15.22	3.81	Low Idle	29.9%	4.8	6.6	85.5	77.4	73.3	72.8	18.2
Idle		2.133	16.83	18.50	46.17	45.98	3.92	Idle	29.9%	3.6	7.7	60.4	66.4	165.6	165.0	14.1
N1		0.426	0.74	0.76	10.42	10.38	0.42	N1	12.4%	23.9	10.2	17.7	18.1	249.5	248.4	10.0
N2		0.378	0.52	0.86	10.45	10.42	0.32	N2	12.3%	61.3	23.2	32.0	52.6	640.3	638.0	19.6
N3		0.383	0.45	1.53	13.39	13.33	0.27	N3	5.8%	59.9	23.0	26.7	91.9	802.1	798.9	16.2
N4		0.367	0.30	2.57	12.93	12.88	0.25	N4	3.6%	55.7	20.5	16.8	143.0	720.6	717.9	13.9
N5		0.355	0.29	2.02	14.20	14.15	0.19	N5	3.6%	80.1	28.4	22.9	161.7	1137.3	1133.3	15.6
N6		0.338	0.27	1.78	13.14	13.10	0.16	N6	1.5%	44.1	14.9	12.0	78.5	579.5	577.6	7.2
N7		0.333	0.28	1.44	12.83	12.79	0.16	N7	0.2%	7.3	2.4	2.0	10.5	94.0	93.7	1.2
N8		0.333	0.29	0.83	11.84	11.80	0.17	N8	0.8%	36.0	12.0	10.6	30.0	426.4	425.0	6.1
								TOTAL	100.0%	376.7	148.8	286.6	730.1	4888.7	4870.7	122.0
							EPA switch du	ty cycle weighted bra	ke-specific emis	sions	0.395	0.76	1.94	12.98	12.93	0.32
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9724 Test Date 12-02-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Runb #3/3

SwRI Proje	ect 08-2062-	-001								eighted Resi	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		EPA Line-Haul WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	25	48.9	377	498	1,024	1,014	96	DB-2	12.5%	3.1	6.1	47.1	62.3	128.0	126.7	12.0
Low Idle	11	17.3	182	201	261	259	40	Low Idle	19.0%	2.1	3.3	34.6	38.2	49.6	49.2	7.6
Idle	12	27.0	193	257	583	579	42	Idle	19.0%	2.3	5.1	36.7	48.8	110.8	110.0	8.0
N1	199	82.7	141	147	2,078	2,065	70	N1	6.5%	12.9	5.4	9.2	9.6	135.1	134.2	4.6
N2	496	193.1	226	435	5,284	5,253	160	N2	6.5%	32.2	12.6	14.7	28.3	343.5	341.5	10.4
N3	1,035	401.3	406	1,842	13,947	13,865	345	N3	5.2%	53.8	20.9	21.1	95.8	725.2	721.0	17.9
N4	1,551	578.9	404	4,665	20,286	20,173	458	N4	4.4%	68.2	25.5	17.8	205.3	892.6	887.6	20.2
N5	2,226	798.8	550	5,895	30,989	30,835	509	N5	3.8%	84.6	30.4	20.9	224.0	1177.6	1171.7	19.3
N6	2,942	1,011.0	756	6,476	38,512	38,353	575	N6	3.9%	114.7	39.4	29.5	252.6	1502.0	1495.8	22.4
N7	3,660	1,227.8	930	4,921	46,137	45,995	754	N7	3.0%	109.8	36.8	27.9	147.6	1384.1	1379.9	22.6
N8	4,501	1,521.3	1,140	4,105	52,128	52,025	956	N8	16.2%	729.2	246.5	184.7	665.0	8444.7	8428.1	154.9
							sum =	TOTAL	100.0%	1213.0	431.9	444.1	1777.4	14893.1	14845.6	299.9
							EPA line-haul duty	cycle weighted br	ake-specific emiss	ions	0.356	0.37	1.5	12.3	12.2	0.25
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
	Notch brake	bsfc	НС	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)		(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF			Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.956	HC (g/hp-hr) 15.08	(g/hp-hr) 19.92	(g/hp-hr) 40.96	(g/hp-hr) 40.55	(g/hp-hr) 3.84	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.956 1.573	HC (g/hp-hr) 15.08 16.55	(g/hp-hr) 19.92 18.27	(g/hp-hr) 40.96 23.73	(g/hp-hr) 40.55 23.52	(g/hp-hr) 3.84 3.64	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.3	w-bsfc w-(lb/hp-hr) 0.0 5.2	w-HC w-(g/hr) 0.0 54.4	w-CO w-(g/hr) 0.0 60.1	w-(g/hr) 0.0 78.0	w-(g/hr) 0.0 77.4	w-(g/hr) 0.0 12.0
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250	HC (g/hp-hr) 15.08 16.55 16.08	(g/hp-hr) 19.92 18.27 21.42	(g/hp-hr) 40.96 23.73 48.58	(g/hp-hr) 40.55 23.52 48.26	(g/hp-hr) 3.84 3.64 3.50	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.3 3.6	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1	w-HC w-(g/hr) 0.0 54.4 57.7	w-CO w-(g/hr) 0.0 60.1 76.8	w-(g/hr) 0.0 78.0 174.3	w-(g/hr) 0.0 77.4 173.1	w-(g/hr) 0.0 12.0 12.6
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416	HC (g/hp-hr) 15.08 16.55 16.08 0.71	(g/hp-hr) 19.92 18.27 21.42 0.74	(g/hp-hr) 40.96 23.73 48.58 10.44	(g/hp-hr) 40.55 23.52 48.26 10.38	(g/hp-hr) 3.84 3.64 3.50 0.35	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.3 3.6 24.7	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3	w-HC w-(g/hr) 0.0 54.4 57.7 17.5	w-CO w-(g/hr) 0.0 60.1 76.8 18.2	w-(g/hr) 0.0 78.0 174.3 257.7	w-(g/hr) 0.0 77.4 173.1 256.1	w-(g/hr) 0.0 12.0 12.6 8.7
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.3 3.6 24.7 61.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5	w-(g/hr) 0.0 78.0 174.3 257.7 649.9	w-(g/hr) 0.0 77.4 173.1 256.1 646.1	w-(g/hr) 0.0 12.0 12.6 8.7 19.7
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389 0.388	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.3 3.6 24.7 61.0 60.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3	w-HC w-(g/hr) 0.0 54.4 57.7 17.5	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389 0.388 0.373	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.3 3.6 24.7 61.0 60.0 55.8	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389 0.388 0.373 0.359	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389 0.388 0.373 0.359 0.344	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25 0.26	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65 2.20	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92 13.09	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85 13.04	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8 15.2	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8 11.3	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2 97.1	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6 577.7	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1 575.3	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3 8.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.956 1.9573 2.250 0.416 0.389 0.388 0.373 0.359 0.344 0.335	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25 0.25	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65 2.20 1.34	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92 13.09 12.61	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85 13.04 12.57	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23 0.23 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8 15.2 2.5	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2 97.1 9.8	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6 577.7 92.3	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1 575.3 92.0	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3 8.6 1.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.956 1.573 2.250 0.416 0.389 0.388 0.373 0.359 0.344	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25 0.26	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65 2.20	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92 13.09	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85 13.04	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1 44.1 7.3 36.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8 15.2 2.5 12.2	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8 11.3 1.9	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2 97.1 9.8 32.8	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6 577.7 92.3 417.0	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1 575.3 92.0 416.2	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3 8.6 1.5 7.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.956 1.9573 2.250 0.416 0.389 0.388 0.373 0.359 0.344 0.335	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25 0.25	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65 2.20 1.34	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92 13.09 12.61	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85 13.04 12.57	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23 0.23 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8 15.2 2.5	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8 11.3	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2 97.1 9.8	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6 577.7 92.3	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1 575.3 92.0	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3 8.6 1.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.956 1.9573 2.250 0.416 0.389 0.388 0.373 0.359 0.344 0.335	HC (g/hp-hr) 15.08 16.55 16.08 0.71 0.46 0.39 0.26 0.25 0.25	(g/hp-hr) 19.92 18.27 21.42 0.74 0.88 1.78 3.01 2.65 2.20 1.34	(g/hp-hr) 40.96 23.73 48.58 10.44 10.65 13.48 13.08 13.92 13.09 12.61	(g/hp-hr) 40.55 23.52 48.26 10.38 10.59 13.40 13.01 13.85 13.04 12.57	(g/hp-hr) 3.84 3.64 3.50 0.35 0.32 0.33 0.30 0.23 0.23 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.3 3.6 24.7 61.0 60.0 55.8 80.1 44.1 7.3 36.0 376.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 8.1 10.3 23.8 23.3 20.8 28.8 15.2 2.5 12.2	w-HC w-(g/hr) 0.0 54.4 57.7 17.5 27.8 23.5 14.5 19.8 11.3 1.9	w-CO w-(g/hr) 0.0 60.1 76.8 18.2 53.5 106.8 167.9 212.2 97.1 9.8 32.8	w-(g/hr) 0.0 78.0 174.3 257.7 649.9 808.9 730.3 1115.6 577.7 92.3 417.0	w-(g/hr) 0.0 77.4 173.1 256.1 646.1 804.2 726.2 1110.1 575.3 92.0 416.2	w-(g/hr) 0.0 12.0 12.6 8.7 19.7 20.0 16.5 18.3 8.6 1.5 7.6

UP No. 9724 Test Results Using 0.3% Sulfur Diesel Fuel

UP #9724 Test Date 11-30-98 0.3% Sulfur Diesel Fuel EM-2708-F Run #1/3

SwRI Proje	ect 08-2062	-001							EPA Line-Hau	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	25	38.0	306	358	810	796	100	DB-2	12.5%	3.1	4.8	38.3	44.8	101.3	99.5	12.5
Low Idle	13	22.0	328	283	255	250	75	Low Idle	19.0%	2.5	4.2	62.3	53.8	48.5	47.6	14.3
Idle	12	28.5	245	272	616	606	54	Idle	19.0%	2.3	5.4	46.6	51.7	117.0	115.1	10.3
N1	195	80.0	157	146	1,955	1,926	121	N1	6.5%	12.7	5.2	10.2	9.5	127.1	125.2	7.9
N2	496	189.4	262	398	5,242	5,170	209	N2	6.5%	32.2	12.3	17.0	25.9	340.7	336.0	13.6
N3	1,036	398.0	470	1,602	13,703	13,520	310	N3	5.2%	53.9	20.7	24.4	83.3	712.6	703.1	16.1
N4	1,548	572.4	407	3,922	20,216	19,947	363	N4	4.4%	68.1	25.2	17.9	172.6	889.5	877.7	16.0
N5	2,222	791.0	613	4,681	31,089	30,666	411	N5	3.8%	84.4	30.1	23.3	177.9	1181.4	1165.3	15.6
N6	2,942	1,002.0	813	5,386	38,517	37,969	456	N6	3.9%	114.7	39.1	31.7	210.1	1502.2	1480.8	17.8
N7	3,660	1,224.0	1,007	4,152	46,587	45,977	498	N7	3.0%	109.8	36.7	30.2	124.6	1397.6	1379.3	14.9
N8	4,499	1,512.0	1,288	3,615	51,648	51,009	640	N8	16.2%	728.8	244.9	208.7	585.6	8367.0	8263.4	103.7
	,	,	,	·	,	ŕ	sum =	TOTAL	100.0%	1212.6	428.5	510.6	1539.6	14784.7	14592.9	242.6
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.353	0.42	1.3	12.2	12.0	0.20
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								Е	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.520	12.24	14.32	32.40	31.83	4.00	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.692	25.23	21.77	19.62	19.25	5.77	Low Idle	29.9%	3.9	6.6	98.1	84.6	76.2	74.8	22.4
Idle		2.375	20.42	22.67	51.33	50.50	4.50	Idle	29.9%	3.6	8.5	73.3	81.3	184.2	181.2	16.1
N1		0.410	0.81	0.75	10.03	9.88	0.62	N1	12.4%	24.2	9.9	19.5	18.1	242.4	238.8	15.0
N2		0.382	0.53	0.80	10.57	10.42	0.42	N2	12.3%	61.0	23.3	32.2	49.0	644.8	635.9	25.7
N3		0.384	0.45	1.55	13.23	13.05	0.30	N3	5.8%	60.1	23.1	27.3	92.9	794.8	784.2	18.0
N4		0.370	0.26	2.53	13.06	12.89	0.23	N4	3.6%	55.7	20.6	14.7	141.2	727.8	718.1	13.1
N5		0.356	0.28	2.11	13.99	13.80	0.18	N5	3.6%	80.0	28.5	22.1	168.5	1119.2	1104.0	14.8
N6		0.341	0.28	1.83	13.09	12.91	0.15	N6	1.5%	44.1	15.0	12.2	80.8	577.8	569.5	6.8
N7		0.334	0.28	1.13	12.73	12.56	0.14	N7	0.2%	7.3	2.4	2.0	8.3	93.2	92.0	1.0
N8		0.336	0.29	0.80	11.48	11.34	0.14	N8	0.8%	36.0	12.1	10.3	28.9	413.2	408.1	5.1
								TOTAL	100.0%	375.9	150.1	311.5	753.6	4873.5	4806.5	138.1
							EPA switch du	ity cycle weighted bra	ke-specific emis	sions	0.399	0.83	2.00	12.96	12.79	0.37
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9724 Test Date 12-02-98 0.3% Sulfur Diesel Fuel EM-2708-F Run #2/3

SwRI Proje	ect 08-2062-	-001							W EPA Line-Haul	eighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	33	44.3	348	394	1,007	1,007	69	DB-2	12.5%	4.1	5.5	43.5	49.3	125.9	125.8	8.6
Low Idle	12	19.5	276	241	233	233	49	Low Idle	19.0%	2.3	3.7	52.4	45.8	44.3	44.3	9.3
Idle	12	27.0	230	262	600	599	44	Idle	19.0%	2.3	5.1	43.7	49.8	114.0	113.9	8.4
N1	194	80.6	149	143	1,963	1,963	74	N1	6.5%	12.6	5.2	9.7	9.3	127.6	127.6	4.8
N2	496	188.0	229	406	4,815	4,811	149	N2	6.5%	32.2	12.2	14.9	26.4	313.0	312.7	9.7
N3	1,034	394.5	436	1,625	13,801	13,787	292	N3	5.2%	53.8	20.5	22.7	84.5	717.7	716.9	15.2
N4	1,554	569.3	414	4,530	20,377	20,355	357	N4	4.4%	68.4	25.0	18.2	199.3	896.6	895.6	15.7
N5	2,221	790.5	640	5,240	30,719	30,687	434	N5	3.8%	84.4	30.0	24.3	199.1	1167.3	1166.1	16.5
N6	2,943	1,000.5	794	5,611	38,424	38,362	484	N6	3.9%	114.8	39.0	31.0	218.8	1498.5	1496.1	18.9
N7	3,661	1,222.7	1,039	4,364	38,880	38,862	491	N7	3.0%	109.8	36.7	31.2	130.9	1166.4	1165.9	14.7
N8	4,500	1,513.3	1,232	4,116	50,518	50,455	655	N8	16.2%	729.0	245.2	199.6	666.8	8183.9	8173.7	106.1
							sum =	TOTAL	100.0%	1213.7	428.3	491.1	1680.0	14355.1	14338.6	227.9
							EPA line-haul duty of	vole weighted br	ake-specific emissi	ions	0.353	0.40	1.4	11.8	11.8	0.19
							EPA line-haul duty of				0.000	1.00	5.0	9.5	9.5	0.60
								,								
								EF	PA Switch Cycle							
Individual N	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	EF	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	EF Notch	,	w-BHP		Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	HC						EPA	w-BHP 0.0	w-bsfc	w-HC	w-CO			
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.342	HC (g/hp-hr) 10.55	(g/hp-hr) 11.94	(g/hp-hr) 30.52	(g/hp-hr) 30.50	(g/hp-hr) 2.09	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.342 1.625	HC (g/hp-hr) 10.55 23.00	(g/hp-hr) 11.94 20.08	(g/hp-hr) 30.52 19.42	(g/hp-hr) 30.50 19.42	(g/hp-hr) 2.09 4.08	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.6	w-bsfc w-(lb/hp-hr) 0.0 5.8	w-HC w-(g/hr) 0.0 82.5	w-CO w-(g/hr) 0.0 72.1	w-(g/hr) 0.0 69.7	w-(g/hr) 0.0 69.7	w-(g/hr) 0.0 14.7
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250	HC (g/hp-hr) 10.55 23.00 19.17	(g/hp-hr) 11.94 20.08 21.83	(g/hp-hr) 30.52 19.42 50.00	(g/hp-hr) 30.50 19.42 49.94	(g/hp-hr) 2.09 4.08 3.67	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.6 3.6	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1	w-HC w-(g/hr) 0.0 82.5 68.8	w-CO w-(g/hr) 0.0 72.1 78.3	w-(g/hr) 0.0 69.7 179.4	w-(g/hr) 0.0 69.7 179.2	w-(g/hr) 0.0 14.7 13.2
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415	HC (g/hp-hr) 10.55 23.00 19.17 0.77	(g/hp-hr) 11.94 20.08 21.83 0.74	(g/hp-hr) 30.52 19.42 50.00 10.12	(g/hp-hr) 30.50 19.42 49.94 10.12	(g/hp-hr) 2.09 4.08 3.67 0.38	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.6 3.6 24.1	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0	w-HC w-(g/hr) 0.0 82.5 68.8 18.5	w-CO w-(g/hr) 0.0 72.1 78.3 17.7	w-(g/hr) 0.0 69.7 179.4 243.4	w-(g/hr) 0.0 69.7 179.2 243.4	w-(g/hr) 0.0 14.7 13.2 9.2
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.6 3.6 24.1 61.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9	w-(g/hr) 0.0 69.7 179.4 243.4 592.2	w-(g/hr) 0.0 69.7 179.2 243.4 591.7	w-(g/hr) 0.0 14.7 13.2 9.2 18.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.6 3.6 24.1 61.0 60.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.6 3.6 24.1 61.0 60.0 55.9	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366 0.356	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27 0.29	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92 2.36	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11 13.83	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10 13.82	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.6 3.6 24.1 61.0 60.0 55.9 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5 28.5	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9 23.0	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1 188.6	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6 1105.9	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8 1104.7	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9 15.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366 0.356 0.340	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27 0.29 0.27	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92 2.36 1.91	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11 13.83 13.06	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10 13.82 13.04	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23 0.23	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.6 3.6 24.1 61.0 60.0 55.9 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5 28.5 15.0	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9 23.0 11.9	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1 188.6 84.2	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6 1105.9 576.4	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8 1104.7 575.4	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9 15.6 7.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366 0.356 0.340 0.334	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27 0.29 0.27 0.28	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92 2.36 1.91 1.19	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11 13.83 13.06 10.62	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10 13.82 13.04 10.62	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23 0.20 0.16 0.13	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.6 3.6 24.1 61.0 60.0 55.9 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5 28.5 15.0 2.4	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9 23.0 11.9 2.1	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1 188.6 84.2 8.7	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6 1105.9 576.4 77.8	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8 1104.7 575.4 77.7	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9 15.6 7.3 1.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366 0.356 0.340 0.334	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27 0.29 0.27 0.28	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92 2.36 1.91 1.19	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11 13.83 13.06 10.62	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10 13.82 13.04 10.62	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23 0.20 0.16 0.13 0.15	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.6 3.6 24.1 61.0 60.0 55.9 80.0 44.1 7.3 36.0 375.6	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5 28.5 15.0 2.4 12.1 148.4	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9 23.0 11.9 2.1 9.9 285.0	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1 188.6 84.2 8.7 32.9 789.9	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6 1105.9 576.4 77.8 404.1 4782.9	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8 1104.7 575.4 77.7 403.6 4778.0	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9 15.6 7.3 1.0 5.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.342 1.625 2.250 0.415 0.379 0.382 0.366 0.356 0.340 0.334	HC (g/hp-hr) 10.55 23.00 19.17 0.77 0.46 0.42 0.27 0.29 0.27 0.28	(g/hp-hr) 11.94 20.08 21.83 0.74 0.82 1.57 2.92 2.36 1.91 1.19	(g/hp-hr) 30.52 19.42 50.00 10.12 9.71 13.35 13.11 13.83 13.06 10.62	(g/hp-hr) 30.50 19.42 49.94 10.12 9.70 13.33 13.10 13.82 13.04 10.62	(g/hp-hr) 2.09 4.08 3.67 0.38 0.30 0.28 0.23 0.20 0.16 0.13	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.6 3.6 24.1 61.0 60.0 55.9 80.0 44.1 7.3 36.0 375.6	w-bsfc w-(lb/hp-hr) 0.0 5.8 8.1 10.0 23.1 22.9 20.5 28.5 15.0 2.4	w-HC w-(g/hr) 0.0 82.5 68.8 18.5 28.2 25.3 14.9 23.0 11.9 2.1 9.9	w-CO w-(g/hr) 0.0 72.1 78.3 17.7 49.9 94.3 163.1 188.6 84.2 8.7 32.9	w-(g/hr) 0.0 69.7 179.4 243.4 592.2 800.5 733.6 1105.9 576.4 77.8 404.1	w-(g/hr) 0.0 69.7 179.2 243.4 591.7 799.6 732.8 1104.7 575.4 77.7 403.6	w-(g/hr) 0.0 14.7 13.2 9.2 18.3 16.9 12.9 15.6 7.3 1.0 5.2

UP #9724 Test Date 12-04-98 0.3% Sulfur Diesel Diesel Fuel EM-2708-F Run #3/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	25	41.4	358	420	882	870	79	DB-2	12.5%	3.1	5.2	44.8	52.5	110.3	108.7	9.9
Low Idle	11	23.0	329	294	266	262	56	Low Idle	19.0%	2.1	4.4	62.5	55.9	50.5	49.8	10.6
Idle	11	24.8	215	260	540	533	39	Idle	19.0%	2.1	4.7	40.9	49.4	102.6	101.2	7.4
N1	197	79.7	151	141	1,960	1,935	80	N1	6.5%	12.8	5.2	9.8	9.2	127.4	125.7	5.2
N2	498	188.0	222	400	5,212	5,147	163	N2	6.5%	32.4	12.2	14.4	26.0	338.8	334.5	10.6
N3	1,038	394.8	499	1,683	14,213	14,039	251	N3	5.2%	54.0	20.5	25.9	87.5	739.1	730.0	13.1
N4	1,550	570.0	397	3,821	19,708	19,457	337	N4	4.4%	68.2	25.1	17.5	168.1	867.2	856.1	14.8
N5	2,225	790.3	609	5,148	31,519	31,140	387	N5	3.8%	84.6	30.0	23.1	195.6	1197.7	1183.3	14.7
N6	2,942	1,005.6	810	6,279	38,503	38,028	464	N6	3.9%	114.7	39.2	31.6	244.9	1501.6	1483.1	18.1
N7	3,661	1,223.0	1,004	5,317	45,152	44,583	544	N7	3.0%	109.8	36.7	30.1	159.5	1354.6	1337.5	16.3
N8	4,503	1,518.0	1,127	4,579	50,069	49,440	643	N8	16.2%	729.5	245.9	182.6	741.8	8111.2	8009.3	104.2
							sum =	TOTAL	100.0%	1213.3	429.1	483.2	1790.4	14500.9	14319.4	224.9
							EPA line-haul	duty cycle weighted br	rake-specific em	nissions	0.354	0.40	1.5	12.0	11.8	0.19
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EI	PA Switch Cycle	Э						
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.656	14.32	16.80	35.28	34.80	3.16	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.091	29.91	26.73	24.18	23.85	5.09	Low Idle	29.9%	3.3	6.9	98.4	87.9	79.5	78.4	16.7
Idle		2.255	19.55	23.64	49.09	48.43	3.55	Idle	29.9%	3.3	7.4	64.3	77.7	161.5	159.3	11.7
N1		0.405	0.77	0.72	9.95	9.82	0.41	N1	12.4%	24.4	9.9	18.7	17.5	243.0	239.9	9.9
N2		0.378	0.45	0.80	10.47	10.33	0.33	N2	12.3%	61.3	23.1	27.3	49.2	641.1	633.1	20.0
N3		0.380	0.48	1.62	13.69	13.53	0.24	N3	5.8%	60.2	22.9	28.9	97.6	824.4	814.3	14.6
N4		0.368	0.26	2.47	12.71	12.55	0.22	N4	3.6%	55.8	20.5	14.3	137.6	709.5	700.5	12.1
N5		0.355	0.27	2.31	14.17	14.00	0.17	N5	3.6%	80.1	28.5	21.9	185.3	1134.7	1121.0	13.9
N6		0.342	0.28	2.13	13.09	12.93	0.16	N6	1.5%	44.1	15.1	12.2	94.2	577.5	570.4	7.0
N7		0.334	0.27	1.45	12.33	12.18	0.15	N7	0.2%	7.3	2.4	2.0	10.6	90.3	89.2	1.1
N8		0.337	0.25	1.02	11.12	10.98	0.14	N8	0.8%	36.0	12.1	9.0	36.6	400.6	395.5	5.1
								TOTAL	100.0%	375.8	148.8	297.0	794.3	4862.0	4801.5	112.2
							EPA switch du	ity cycle weighted brak	ke-specific emis	sions	0.396	0.79	2.11	12.94	12.78	0.30
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP No. 9724 Smoke Test Summary

SMOKE TEST SUMMARY FOR UP NO. 9724

Run #	ss	30-sec	3-sec
Carb Diesel	(EM-266	3-F)	
# 1 # 2 # 3 Avg cov	12 12 13 12 5%	19 18 20 19 5%	62 61 59 61 3%
On-Highway	y Diesel ((EM-2677-F)	
# 1 # 2 # 3 Avg cov	12 12 12 12 0%	18 16 19 18 9%	62 62 61 62 1%
Nonroad Hi	gh Sulfu	r Diesel (EM	1-2664-F)
# 1 # 2 # 3 Avg cov	10 15 13 13 20%	15 17 19 17 12%	56 52 58 55 6%
Fuel #4, No	nroad 0.3	3% Sulfur D	iesel (EM-2708-F)
# 1 # 2 # 3	12 12 10	14 15 15	57 61 56

15

4%

58

5%

updated 12/17/98 sgf

11 10%

Avg

cov

UP No. 9715 Test Summary

Note	EPA Lir	ne-Haul Duty	Cycle We	eighting Fa	ectors EPA				EPA Sw	vitcher Duty	Cycle We	ighting Fa	ctors EPA			
0.383		lb/hp-hr	g/hp-hr		NOx			GE DASH9-44CW		lb/hp-hr	g/hp-hr		NOx			
0.357 0.35	Carb Di	iesel (EM-266	3-F)					updated 06-29-99	Carb Di	esel (EM-266	63-F)					
Ayg 0.355 0.321 3.0 10.405 10.340 0.12 bit only Ayg 0.380 bit of 0.565 2.87 bit of 0.565 2.89 bit of 0.565 2.89 bit of 0.565 2.89 bit of 0.565 2.89 bit of 0.565 2.80 bit of 0.77 2.80		0.353	0.32	2.8	10.842	10.751	0.13			0.389	0.55	2.91	12.352	12.244	0.18	
Avg over control of the con																
COV 0.6% 5.2% 3.7% 2.1% 1.9% 4.4% cov 0.7% 6.0% 3.8% 1.7% 1.6% 8.9% On-Highway Dieset (EM-2677-F) 0.360 0.355 2.99 11.286 11.160 0.14 0.396 0.62 3.03 12.778 12.616 0.17 Avg 0.353 0.31 2.8 10.689 0.12 0.388 0.360 0.62 3.03 12.778 12.616 0.17 Avg 0.353 0.336 2.89 10.685 0.12 0.238 0.566 2.60 12.671 12.641 0.15 cov 1.2% 6.2% 3.8% 2.9% 2.6% 8.7% 0.02 0.388 0.566 2.60 12.671 12.641 0.15 cov 1.2% 6.2% 3.8% 2.9% 2.6% 8.7% 0.02 0.381 0.31 3.3 1.141 11.384 0.24 0.036 0.031 3.3	_								_							
On-Highway Diese EM-2677-F Con-Highway Diese Con-Highwa	_								_							
Nonroad High Sulfur Diesel (EM-2664-F) Nonroad High Sulfur Diesel (EM-2708-F) Nonroad High Sulfur Diesel (EM-2664-F) Nonroad High Sulfur Diesel (EM-2664	cov	0.6%	5.2%	3.7%	2.1%	1.9%	4.4%		cov	0.7%	6.0%	3.8%	1.7%	1.6%	8.9%	
Nonroad High Sulfur Diesel (EM-2664-F)	On-Hig	hway Diesel (EM-2677	-F)					On-Higl	hway Diesel	(EM-2677	-F)				
0.361 0.34 3.0 10.829 10.698 0.13 0.13 0.388 0.336 0.389 10.838 0.130 0.388 0.386 0.682 12.671 12.641 0.15 0.388 0.386 0.388 0.386 0.388 0.386 0.388 0.888 0.889 0.388 0.601 0.388 0.601 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388 0.689 0.388		0.360	0.35	2.9	11.286	11.160	0.14			0.396	0.62	3.03	13.102	12.943	0.17	
Avg 0.388 0.336 2.89 10.935 10.838 0.130 cov 1.3% 5.7% 8.6% 12.733 0.165 cov 1.3% 5.7% 8.6% 1.7% 1.4% 6.3% cov 1.3% cov cov 1.3% cov cov 1.3% cov		0.361	0.34		10.829	10.698	0.13			0.396	0.62	3.03	12.778	12.616	0.17	
Nonroad High Sulfur Diesel (EM-2664-F)		0.353	0.31	2.8	10.689	10.655	0.12			0.388	0.56	2.60	12.671	12.641	0.15	
Nonroad High Sulfur Diesel (EM-2664-F)	Avg	0.358	0.336	2.89	10.935	10.838	0.130		Avg	0.393	0.601	2.89	12.850	12.733	0.165	
0.359	cov	1.2%	6.2%	3.8%	2.9%	2.6%	8.7%		cov	1.3%	5.7%	8.6%	1.7%	1.4%	6.3%	
0.361	Nonroa	ıd High Sulfuı	r Diesel (I	EM-2664-F)				Nonroa	d High Sulfu	r Diesel (l	EM-2664-F	·)			
0.361		0.359	0.33	3.0	11 790	11 646	0.20			0.394	0.61	3 03	13 478	13 315	0.23	
Avg 0.361 0.32 0.36 0.324 3.00 11.411 11.384 0.20 0.402 0.402 0.63 0.606 0.295 13.371 13.245 0.251																
Avg 0.361 0.324 3.00 11.573 11.462 0.213 Avg 0.398 0.606 2.95 13.371 13.245 0.251 0.38 Sulfur Diesel (EM-2708-F) 0.389 0.33 3.0 11.416 11.585 0.15 0.395 0.398 0.398 0.30 11.307 13.295 0.18 0.363 0.33 3.4 11.470 11.349 0.19 0.19 0.402 0.65 3.24 13.817 13.662 0.22 0.32 0.32 13.817 13.662 0.22 0.357 0.32 2.6 11.034 10.953 0.17 0.393 0.57 2.48 12.817 12.723 0.20 0.20 0.20 Avg 0.359 0.328 3.00 11.307 11.296 0.171 Avg 0.397 0.621 2.92 13.320 13.223 0.20 0.320 13.223 0.20 cov 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% 2.8% 10.6% 0.0% 1.1% 7.2% 13.4% 3.8% 3.6% 3.6% 9.1 -1.3% 1% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6																
COV 0.4% 3.6% 11.4% 1.7% 1.4% 11.9% COV 1.0% 4.7% 10.8% 1.0% 0.5% 15.0%	Ava								Ava							
Avg 0.359 0.33 3.0 11.416 11.585 0.15 0.363 0.33 3.4 11.470 11.349 0.19 0.357 0.32 2.6 11.034 10.953 0.17 0.359 0.328 3.00 11.307 11.296 0.171 Avg 0.359 0.328 3.00 13.5% 2.1% 2.8% 10.6% cov 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% cov 1.1% 7.2% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 3.8% 3.6% 9.1% 13.4% 13.8% 3.6% 9.1% 13.4% 13.8% 3.6% 9.1% 13.4% 13.8% 13.4% 13.8% 13.4% 13.8% 13.4% 13.8% 13.4% 13.8% 13.4% 13.8% 13.4% 13.4% 13.8% 13.4% 13.4% 13.4% 13.8% 13.4%	_	0.4%	3.6%	11.4%	1.7%	1.4%	11.9%		_	1.0%	4.7%	10.8%	1.0%	0.5%	15.0%	
Avg 0.363 0.33 3.4 11.470 11.349 0.19 0.357 0.32 2.6 11.034 10.953 0.17 Avg 0.359 0.328 3.00 11.307 11.296 0.171 Avg 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% Cov 1.1% 7.2% 13.4% 3.8% 3.6% 9.1% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2	0.3% Sı	ulfur Diesel (E	EM-2708-I	F)					0.3% Su	ılfur Diesel (EM-2708-	F)				
Avg 0.363 0.33 3.4 11.470 11.349 0.19 0.357 0.32 2.6 11.034 10.953 0.17 Avg 0.359 0.328 3.00 11.307 11.296 0.171 Avg 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% Cov 1.1% 7.2% 13.4% 3.8% 3.6% 9.1% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2% 7.2		0.350	0.33	3.0	11 /16	11 585	0.15			0.307	0.64	3 02	13 327	13 285	0.18	
Avg 0.357 0.32 2.6 11.034 10.953 0.17 Avg 0.393 0.57 2.48 12.817 12.723 0.20 cov 0.359 0.359 0.328 3.00 11.307 11.296 0.171 cov 1.1% 7.2% 13.40 13.320 13.223 0.200 cov 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% Carb vs HS -1.3% 1% -4% -8% -8% -41% carb vs HS -0.7% 4% -3% -6% -5% -39% on-hwy vs HS -0.6% -3% -1% -2.6% -2% carb vs on-hwy Note: EPA NOx = full NOx correction factor Note: KH NOx = only ambient air humidity NOx correction factor applied																
Avg cov 0.359 (0.9%) 0.328 (0.9%) 3.0% (0.9%) 11.307 (0.9%) 11.296 (0.9%) 0.171 (0.9%) Avg cov 0.397 (0.9%) 0.621 (0.9%) 13.220 (0.9%) 13.223 (0.9%) 0.200 (0.9%) 13.4% (0.9%) 13.4% (0.9%) 13.223 (0.9%) 0.200 (0.9%) 1.1% (0.9%) 1.1% (0.9%) 1.1% (0.9%) 1.1% (0.9%) 1.1% (0.9%) 1.1% (0.9%) 1.2% (0.9%) 1.1% (0.9%)																
cov 0.9% 3.0% 13.5% 2.1% 2.8% 10.6% cov 1.1% 7.2% 13.4% 3.8% 3.6% 9.1% -1.3% 1% -4% -8% -8% -41% carb vs HS -2.0% -7% -2% -9% -9% -32% carb vs HS -0.7% 4% -3% -6% -5% -39% on-hwy vs HS -1.3% -1% -2% -4% -4% -34% on-hwy vs HS -0.6% -3% -1% -3% -2.6% -2% carb vs on-hwy -0.7% -6% 0% -5% -5% 4% carb vs on-hwy Note: EPA NOx = full NOx correction factor Note: KH NOx = only ambient air humidity NOx correction factor applied -2% -2% carb vs on-hwy	Avg								Avq							
-0.7% 4% -3% -6% -5% -39% on-hwy vs HS -1.3% -1% -2% -4% -4% -34% on-hwy vs HS -0.6% -3% -1% -3% -2.6% -2% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% carb vs on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -34% on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -34% on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -34% on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -34% on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -4% -4% -34% on-hwy vs HS -0.7% -6% 0% -5% -5% 4% -4% -4% -4% -4% -4% -4% -4% -4% -4%	_	0.9%	3.0%	13.5%	2.1%	2.8%	10.6%			1.1%	7.2%	13.4%	3.8%	3.6%	9.1%	
-0.6% -3% -1% -3% -2.6% -2% carb vs on-hwy -0.7% -6% 0% -5% -5% 4% carb vs on-hw Note: EPA NOx = full NOx correction factor Note: KH NOx = only ambient air humidity NOx correction factor applied		-1.3%	1%	-4%	-8%	-8%	-41%	carb vs HS		-2.0%	-7%	-2%	-9%	-9%	-32%	carb vs HS
Note: EPA NOx = full NOx correction factor Note: KH NOx = only ambient air humidity NOx correction factor applied		-0.7%	4%	-3%	-6%	-5%	-39%	on-hwy vs HS		-1.3%	-1%	-2%	-4%	-4%	-34%	on-hwy vs HS
Note: KH NOx = only ambient air humidity NOx correction factor applied		-0.6%	-3%	-1%	-3%	-2.6%	-2%	carb vs on-hwy		-0.7%	-6%	0%	-5%	-5%	4%	carb vs on-hw
						ection factor	r applied									
-1.0% -0.1% -4.2% -5.9% -6.6% -25.9% carb vs 0.3% S	NOIC. IN	,		•			арріїси									
		-1.0%	-0.1%	-4.2%	-5.9%	-6.6%	-25.9%	carb vs 0.3% S								

-0.4% 2.6% -3.5% -3.3% -4.1% -24.1% on-hwy vs 0.3% S

UP No. 9715 Test Results Using CARB Diesel Fuel

UP #9715 Test Date 10-26-98 CARB Diesel Fuel EM-2663-F Run #1/3

SwRI Proje	ect 08-2062-	-001							V EPA Line-Haul	Weighted Res	ults					
	flywheel	fuel rate	HC	со	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	32	40.8	200	358	830	823	30	DB-2	12.5%	4.0	5.1	25.0	44.8	103.8	102.9	3.8
Low Idle	13	20.6	156	189	397	392	22	Low Idle	19.0%	2.5	3.9	29.6	35.9	75.4	74.5	4.2
Idle	12	24.0	147	236	492	489	19	Idle	19.0%	2.3	4.6	27.9	44.8	93.5	92.8	3.6
N1	193	78.0	124	149	1,693	1,678	27	N1	6.5%	12.5	5.1	8.1	9.7	110.0	109.1	1.8
N2	495	183.0	188	314	4,720	4,681	55	N2	6.5%	32.2	11.9	12.2	20.4	306.8	304.2	3.6
N3	1,036	387.0	366	1,620	14,326	14,207	176	N3	5.2%	53.9	20.1	19.0	84.2	745.0	738.8	9.2
N4	1,550	558.0	384	5,681	20,865	20,677	300	N4	4.4%	68.2	24.6	16.9	250.0	918.1	909.8	13.2
N5	2,224	786.0	621	9,668	29,076	28,814	368	N5	3.8%	84.5	29.9	23.6	367.4	1104.9	1094.9	14.0
N6	2,939	996.3	726	10,077	34,737	34,425	353	N6	3.9%	114.6	38.9	28.3	393.0	1354.7	1342.6	13.8
N7	3,665	1,230.0	908	10,577	41,830	41,485	351	N7	3.0%	110.0	36.9	27.2	317.3	1254.9	1244.5	10.5
N8	4,489	1,527.6	1,060	11,461	43,654	43,295	492	N8	16.2%	727.2	247.5	171.7	1856.7	7071.9	7013.8	79.7
							sum =	TOTAL	100.0%	1211.8	428.3	389.7	3424.2	13139.0	13028.0	157.2
							EPA line-haul duty	cycle weighted br	ake-specific emis	sions	0.353	0.32	2.8	10.8	10.8	0.13
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual N	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual N	Notch brake	-specific em	issions HC	со	Corr. NOx	KH-NOx	PM	EF	EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	EF Notch	·	w-BHP		Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	HC						EPA	w-BHP 0.0	w-bsfc	w-HC	w-CO			
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.275	HC (g/hp-hr) 6.25	(g/hp-hr) 11.19	(g/hp-hr) 25.94	(g/hp-hr) 25.73	(g/hp-hr) 0.94	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.275 1.585	HC (g/hp-hr) 6.25 12.00	(g/hp-hr) 11.19 14.54	(g/hp-hr) 25.94 30.54	(g/hp-hr) 25.73 30.18	(g/hp-hr) 0.94 1.69	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.9	w-bsfc w-(lb/hp-hr) 0.0 6.2	w-HC w-(g/hr) 0.0 46.6	w-CO w-(g/hr) 0.0 56.5	w-(g/hr) 0.0 118.7	w-(g/hr) 0.0 117.3	w-(g/hr) 0.0 6.6
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38	(g/hp-hr) 11.19 14.54 19.67	(g/hp-hr) 25.94 30.54 41.00	(g/hp-hr) 25.73 30.18 40.71	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.9 3.6	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5	w-HC w-(g/hr) 0.0 46.6 44.0	w-CO w-(g/hr) 0.0 56.5 70.6	w-(g/hr) 0.0 118.7 147.1 209.9 580.6	w-(g/hr) 0.0 117.3 146.1 208.1 575.7	w-(g/hr) 0.0 6.6 5.7 3.3 6.8
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.9 3.6 23.9 60.9 60.1	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.9 3.6 23.9 60.9	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6	w-(g/hr) 0.0 118.7 147.1 209.9 580.6	w-(g/hr) 0.0 117.3 146.1 208.1 575.7	w-(g/hr) 0.0 6.6 5.7 3.3 6.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360 0.353	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25 0.28	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67 4.35	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46 13.07	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.9 3.6 23.9 60.9 60.1	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1 28.3	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8 22.4	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5 348.0	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1 1046.7	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4 1037.3	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8 13.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71 13.34	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.9 3.6 23.9 60.9 60.1 55.8	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360 0.353	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25 0.28	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67 4.35	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46 13.07	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71 13.34 12.96	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.9 3.6 23.9 60.9 60.1 55.8 80.1	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1 28.3	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8 22.4	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5 348.0	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1 1046.7	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4 1037.3	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8 13.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360 0.353 0.339	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25 0.28 0.25	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67 4.35 3.43	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46 13.07 11.82	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71 13.34 12.96 11.71	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19 0.17	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5%	0.0 3.9 3.6 23.9 60.9 60.1 55.8 80.1 44.1	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1 28.3 14.9	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8 22.4 10.9	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5 348.0 151.2	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1 1046.7 521.1	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4 1037.3 516.4	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8 13.2 5.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360 0.353 0.339 0.336	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25 0.25 0.25 0.25	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67 4.35 3.43 2.89	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46 13.07 11.82 11.41	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71 13.34 12.96 11.71 11.32	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19 0.17 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.9 3.6 23.9 60.9 60.1 55.8 80.1 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1 28.3 14.9 2.5	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8 22.4 10.9 1.8	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5 348.0 151.2 21.2	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1 1046.7 521.1 83.7	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4 1037.3 516.4 83.0	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8 13.2 5.3 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.275 1.585 2.000 0.404 0.370 0.374 0.360 0.353 0.339 0.336	HC (g/hp-hr) 6.25 12.00 12.25 0.64 0.38 0.35 0.25 0.25 0.25 0.25	(g/hp-hr) 11.19 14.54 19.67 0.77 0.63 1.56 3.67 4.35 3.43 2.89	(g/hp-hr) 25.94 30.54 41.00 8.77 9.54 13.83 13.46 13.07 11.82 11.41	(g/hp-hr) 25.73 30.18 40.71 8.69 9.46 13.71 13.34 12.96 11.71 11.32	(g/hp-hr) 0.94 1.69 1.58 0.14 0.11 0.17 0.19 0.17 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.9 3.6 23.9 60.9 60.1 55.8 80.1 44.1 7.3 35.9 375.6	w-bsfc w-(lb/hp-hr) 0.0 6.2 7.2 9.7 22.5 22.4 20.1 28.3 14.9 2.5 12.2	w-HC w-(g/hr) 0.0 46.6 44.0 15.4 23.1 21.2 13.8 22.4 10.9 1.8 8.5	w-CO w-(g/hr) 0.0 56.5 70.6 18.5 38.6 94.0 204.5 348.0 151.2 21.2 91.7	w-(g/hr) 0.0 118.7 147.1 209.9 580.6 830.9 751.1 1046.7 521.1 83.7 349.2	w-(g/hr) 0.0 117.3 146.1 208.1 575.7 824.0 744.4 1037.3 516.4 83.0 346.4	w-(g/hr) 0.0 6.6 5.7 3.3 6.8 10.2 10.8 13.2 5.3 0.7 3.9

UP #9715 Test Date 10-29-98 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	22	42.7	226	376	885	874	39	DB-2	12.5%	2.8	5.3	28.3	47.0	110.6	109.2	4.9
Low Idle	10	19.8	168	128	376	372	23	Low Idle	19.0%	1.9	3.8	31.9	24.3	71.4	70.6	4.4
Idle	14	25.6	169	234	544	537	21	Idle	19.0%	2.7	4.9	32.1	44.5	103.4	102.0	4.0
N1	195	81.0	142	165	1,704	1,687	30	N1	6.5%	12.7	5.3	9.2	10.7	110.8	109.6	2.0
N2	503	188.5	196	305	4,821	4,757	52	N2	6.5%	32.7	12.3	12.7	19.8	313.4	309.2	3.4
N3	1,037	389.4	438	2,121	13,933	13,791	203	N3	5.2%	53.9	20.2	22.8	110.3	724.5	717.2	10.6
N4	1,552	568.0	383	5,700	20,768	20,558	283	N4	4.4%	68.3	25.0	16.9	250.8	913.8	904.6	12.5
N5	2,222	792.8	627	9,876	28,173	27,888	380	N5	3.8%	84.4	30.1	23.8	375.3	1070.6	1059.7	14.4
N6	2,940	1,005.0	787	11,187	34,106	33,758	363	N6	3.9%	114.7	39.2	30.7	436.3	1330.1	1316.5	14.2
N7	3,664	1,235.4	970	10,206	41,973	41,543	334	N7	3.0%	109.9	37.1	29.1	306.2	1259.2	1246.3	10.0
N8	4,489	1,539.3	1,125	10,865	42,700	42,334	473	N8	16.2%	727.2	249.4	182.3	1760.1	6917.4	6858.1	76.6
							sum =	TOTAL	100.0%	1211.1	432.5	419.7	3385.3	12925.2	12803.0	156.8
							EPA line-haul dut	ty cycle weighted br	ake-specific emi	ssions	0.357	0.35	2.8	10.7	10.6	0.13
							EPA line-haul dut	ty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	РМ	EF	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake	•		CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	EF Notch	,	w-BHP		Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	HC						EPA	w-BHP 0.0	w-bsfc	w-HC	w-CO			
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.941	HC (g/hp-hr) 10.27	(g/hp-hr) 17.09	(g/hp-hr) 40.23	(g/hp-hr) 39.71	(g/hp-hr) 1.77	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.941 1.980	HC (g/hp-hr) 10.27 16.80	(g/hp-hr) 17.09 12.80	(g/hp-hr) 40.23 37.60	(g/hp-hr) 39.71 37.17	(g/hp-hr) 1.77 2.30	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.9	w-HC w-(g/hr) 0.0 50.2	w-CO w-(g/hr) 0.0 38.3	w-(g/hr) 0.0 112.4	w-(g/hr) 0.0 111.1	w-(g/hr) 0.0 6.9
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829	HC (g/hp-hr) 10.27 16.80 12.07	(g/hp-hr) 17.09 12.80 16.71	(g/hp-hr) 40.23 37.60 38.86	(g/hp-hr) 39.71 37.17 38.34	(g/hp-hr) 1.77 2.30 1.50	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.0 4.2	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7	w-HC w-(g/hr) 0.0 50.2 50.5	w-CO w-(g/hr) 0.0 38.3 70.0	w-(g/hr) 0.0 112.4 162.7	w-(g/hr) 0.0 111.1 160.5	w-(g/hr) 0.0 6.9 6.3
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415	HC (g/hp-hr) 10.27 16.80 12.07 0.73	(g/hp-hr) 17.09 12.80 16.71 0.85	(g/hp-hr) 40.23 37.60 38.86 8.74	(g/hp-hr) 39.71 37.17 38.34 8.65	(g/hp-hr) 1.77 2.30 1.50 0.15	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 4.2 24.2	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0	w-HC w-(g/hr) 0.0 50.2 50.5 17.6	w-CO w-(g/hr) 0.0 38.3 70.0 20.5	w-(g/hr) 0.0 112.4 162.7 211.3	w-(g/hr) 0.0 111.1 160.5 209.2	w-(g/hr) 0.0 6.9 6.3 3.7
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 4.2 24.2 61.9	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5	w-(g/hr) 0.0 112.4 162.7 211.3 593.0	w-(g/hr) 0.0 111.1 160.5 209.2 585.1	w-(g/hr) 0.0 6.9 6.3 3.7 6.4
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 4.2 24.2 61.9 60.1	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376 0.366	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42 0.25	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05 3.67	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44 13.38	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30 13.25	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20 0.18	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 4.2 24.2 61.9 60.1 55.9	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6 20.4	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4 13.8	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0 205.2	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1 747.6	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9 740.1	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8 10.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376 0.366 0.357	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42 0.25 0.28	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05 3.67 4.44	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44 13.38 12.68	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30 13.25 12.55	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20 0.18 0.17	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.99% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 4.2 24.2 61.9 60.1 55.9 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6 20.4 28.5	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4 13.8 22.6	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0 205.2 355.5	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1 747.6 1014.2	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9 740.1 1004.0	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8 10.2 13.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376 0.366 0.357 0.342	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42 0.25 0.28 0.27	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05 3.67 4.44 3.81	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44 13.38 12.68 11.60	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30 13.25 12.55 11.48	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20 0.18 0.17	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 4.2 24.2 61.9 60.1 55.9 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6 20.4 28.5 15.1	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4 13.8 22.6 11.8	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0 205.2 355.5 167.8	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1 747.6 1014.2 511.6	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9 740.1 1004.0 506.4	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8 10.2 13.7 5.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376 0.366 0.357 0.342	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42 0.25 0.28 0.27 0.26	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05 3.67 4.44 3.81 2.79	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44 13.38 12.68 11.60 11.46	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30 13.25 12.55 11.48 11.34	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20 0.18 0.17 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 4.2 24.2 61.9 60.1 55.9 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6 20.4 28.5 15.1 2.5	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4 13.8 22.6 11.8	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0 205.2 355.5 167.8 20.4	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1 747.6 1014.2 511.6 83.9	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9 740.1 1004.0 506.4 83.1	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8 10.2 13.7 5.4 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.941 1.980 1.829 0.415 0.375 0.376 0.366 0.357 0.342	HC (g/hp-hr) 10.27 16.80 12.07 0.73 0.39 0.42 0.25 0.28 0.27 0.26	(g/hp-hr) 17.09 12.80 16.71 0.85 0.61 2.05 3.67 4.44 3.81 2.79	(g/hp-hr) 40.23 37.60 38.86 8.74 9.58 13.44 13.38 12.68 11.60 11.46	(g/hp-hr) 39.71 37.17 38.34 8.65 9.46 13.30 13.25 12.55 11.48 11.34	(g/hp-hr) 1.77 2.30 1.50 0.15 0.10 0.20 0.18 0.17 0.12 0.09 0.11	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 3.0 4.2 24.2 61.9 60.1 55.9 80.0 44.1 7.3 35.9 376.6	w-bsfc w-(lb/hp-hr) 0.0 5.9 7.7 10.0 23.2 22.6 20.4 28.5 15.1 2.5 12.3	w-HC w-(g/hr) 0.0 50.2 50.5 17.6 24.1 25.4 13.8 22.6 11.8 1.9	w-CO w-(g/hr) 0.0 38.3 70.0 20.5 37.5 123.0 205.2 355.5 167.8 20.4 86.9	w-(g/hr) 0.0 112.4 162.7 211.3 593.0 808.1 747.6 1014.2 511.6 83.9 341.6	w-(g/hr) 0.0 111.1 160.5 209.2 585.1 799.9 740.1 1004.0 506.4 83.1 338.7	w-(g/hr) 0.0 6.9 6.3 3.7 6.4 11.8 10.2 13.7 5.4 0.7 3.8

UP #9715 Test Date 11-02-98 CARB Diesel Fuel EM-2663-F Run #3/3

SwRI Proje	ect 08-2062-						Weighted Results										
•							EPA Line-Haul										
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM	
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	
DB-2	31	42.8	197	336	899	891	32	DB-2	12.5%	3.9	5.4	24.6	42.0	112.4	111.4	4.0	
Low Idle	10	20.3	159	163	380	377	22	Low Idle	19.0%	1.9	3.9	30.2	31.0	72.2	71.7	4.2	
Idle	10	22.0	137	179	485	482	18	Idle	19.0%	1.9	4.2	26.0	34.0	92.2	91.6	3.4	
N1	197	78.0	120	126	1,753	1,742	22	N1	6.5%	12.8	5.1	7.8	8.2	113.9	113.2	1.4	
N2	502	185.0	179	275	4,770	4,739	48	N2	6.5%	32.6	12.0	11.6	17.9	310.1	308.1	3.1	
N3	1,039	384.0	370	1,132	13,675	13,587	135	N3	5.2%	54.0	20.0	19.2	58.9	711.1	706.5	7.0	
N4	1,554	562.0	370	5,055	20,299	20,168	214	N4	4.4%	68.4	24.7	16.3	222.4	893.2	887.4	9.4	
N5	2,221	793.0	579	9,496	27,543	27,365	328	N5	3.8%	84.4	30.1	22.0	360.8	1046.6	1039.9	12.5	
N6	2,941	1,008.0	735	11,647	32,921	32,708	365	N6	3.9%	114.7	39.3	28.7	454.2	1283.9	1275.6	14.2	
N7	3,663	1,244.0	885	11,983	39,490	39,184	354	N7	3.0%	109.9	37.3	26.6	359.5	1184.7	1175.5	10.6	
N8	4,492	1,548.0	1,037	12,577	41,934	41,690	467	N8	16.2%	727.7	250.8	168.0	2037.5	6793.3	6753.8	75.7	
							sum =	TOTAL	100.0%	1212.2	432.7	381.0	3626.4	12613.5	12534.7	145.6	
	EPA line-haul duty cycle weighte							tv cvcle weighted bra	ake-specific emi	ssions	0.357	0.31	3.0	10.4	10.3	0.12	
							EPA line-haul duty cycle maximum Tier 0				1.00	5.0	9.5	9.5	0.60		
								EP	A Switch Cycle								
Individual Notch brake-specific emissions								Weighted Results									
		bsfc	НС	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM	
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	
DB-2		1.381	6.35	10.84	29.00	28.74	1.03	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Low Idle		2.030	15.90	16.30	38.00	37.74	2.20	Low Idle	29.9%	3.0	6.1	47.5	48.7	113.6	112.9	6.6	
Idle		2.200	13.70	17.90	48.50	48.23	1.80	Idle	29.9%	3.0	6.6	41.0	53.5	145.0	144.2	5.4	
N1		0.396	0.61	0.64	8.90	8.84	0.11	N1	12.4%	24.4	9.7	14.9	15.6	217.4	216.0	2.7	
N2		0.369	0.36	0.55	9.50	9.44	0.10	N2	12.3%	61.7	22.8	22.0	33.8	586.7	583.0	5.9	
N3		0.370	0.36	1.09	13.16	13.08	0.13	N3	5.8%	60.3	22.3	21.5	65.7	793.2	788.0	7.8	
N4		0.362	0.24	3.25	13.06	12.98	0.14	N4	3.6%	55.9	20.2	13.3	182.0	730.8	726.0	7.7	
N5		0.357	0.26	4.28	12.40	12.32	0.15	N5	3.6%	80.0	28.5	20.8	341.9	991.5	985.2	11.8	
N6		0.343	0.25	3.96	11.19	11.12	0.12	N6	1.5%	44.1	15.1	11.0	174.7	493.8	490.6	5.5	
N7		0.340	0.24	3.27	10.78	10.70	0.10	N7	0.2%	7.3	2.5	1.8	24.0	79.0	78.4	0.7	
N8		0.345	0.23	2.80	9.34	9.28	0.10	N8	0.8%	35.9	12.4	8.3	100.6	335.5	333.5	3.7	
.40		0.040	0.20	2.00	3.04	3.20	0.10	TOTAL	100.0%	375.7	146.1	202.1	1040.5	4486.4	4457.7	57.9	
EPA switch duty cycle weighted brake								e-specific emissi	ions	0.389	0.54	2.77	11.94	11.87	0.15		
EPA switch cycle maximum Tier 0								2.300	2.10	8.0	14.0	14.0	0.72				

UP No. 9715 Test Results Using On-Highway Diesel Fuel

UP #9715 Test Date 10-27-98 On-Highway Diesel Fuel EM-2677-F Run #1/3

SwRI Proj	ect 08-2062	-001							EDA Line Head	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Haul WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	25	43.8	245	476	1009	995	32	DB-2	12.5%	3.1	5.5	30.6	59.5	126.1	124.4	4.0
Low Idle	11	20.0	187	260	429	422	24	Low Idle	19.0%	2.1	3.8	35.5	49.4	81.5	80.3	4.6
Idle	11	24.6	174	318	567	557	23	Idle	19.0%	2.1	4.7	33.1	60.4	107.7	105.9	4.4
N1	197	80.3	137	156	1,853	1,829	25	N1	6.5%	12.8	5.2	8.9	10.1	120.4	118.9	1.6
N2	497	186.0	201	289	5,216	5,145	49	N2	6.5%	32.3	12.1	13.1	18.8	339.0	334.4	3.2
N3	1.035	394.0	382	1.568	14.889	14.678	146	N3	5.2%	53.8	20.5	19.9	81.5	774.2	763.3	7.6
N4	1,551	574.3	441	5,279	22,634	22,296	249	N4	4.4%	68.2	25.3	19.4	232.3	995.9	981.0	11.0
N5	2,223	799.0	644	9,533	30,131	29,874	373	N5	3.8%	84.5	30.4	24.5	362.3	1145.0	1135.2	14.2
N6	2,941	1,020.0	796	11,160	36,031	35,709	408	N6	3.9%	114.7	39.8	31.0	435.2	1405.2	1392.7	15.9
N7	3,667	1,258.0	962	10,849	43,421	43,033	436	N7	3.0%	110.0	37.7	28.9	325.5	1302.6	1291.0	13.1
N8	4,495	1,553.0	1,132	11,954	44,933	44,427	558	N8	16.2%	728.2	251.6	183.4	1936.5	7279.1	7197.2	90.4
							sum =	TOTAL	100.0%	1211.9	436.5	428.2	3571.6	13676.9	13524.3	169.9
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.360	0.35	2.9	11.3	11.2	0.14
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.752	9.80	19.04	40.36	39.80	1.28	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.818	17.00	23.64	39.00	38.41	2.18	Low Idle	29.9%	3.3	6.0	55.9	77.7	128.3	126.3	7.2
Idle		2.236	15.82	28.91	51.55	50.67	2.09	Idle	29.9%	3.3	7.4	52.0	95.1	169.5	166.7	6.9
N1		0.408	0.70	0.79	9.41	9.29	0.13	N1	12.4%	24.4	10.0	17.0	19.3	229.8	226.8	3.1
N2		0.374	0.40	0.58	10.49	10.35	0.10	N2	12.3%	61.1	22.9	24.7	35.5	641.6	632.8	6.0
N3		0.381	0.37	1.51	14.39	14.18	0.14	N3	5.8%	60.0	22.9	22.2	90.9	863.6	851.3	8.5
N4		0.370	0.28	3.40	14.59	14.38	0.16	N4	3.6%	55.8	20.7	15.9	190.0	814.8	802.7	9.0
N5		0.359	0.29	4.29	13.55	13.44	0.17	N5	3.6%	80.0	28.8	23.2	343.2	1084.7	1075.5	13.4
N6		0.347	0.27	3.79	12.25	12.14	0.14	N6	1.5%	44.1	15.3	11.9	167.4	540.5	535.6	6.1
N7		0.343	0.26	2.96	11.84	11.74	0.12	N7	0.2%	7.3	2.5	1.9	21.7	86.8	86.1	0.9
N8		0.345	0.25	2.66	10.00	9.88	0.12	N8	0.8%	36.0	12.4	9.1	95.6	359.5	355.4	4.5
								TOTAL	100.0%	375.4	148.7	233.8	1136.6	4919.0	4859.3	65.5
								ty cycle weighted brai	ke-specific emis	sions	0.396	0.62	3.03	13.10	12.94	0.17
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9715 Test Date 10-30-98 On-Highway Diesel Fuel EM-2677-F Run #2/3

SwRI Proj	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	25	40.8	215	446	891	879	27	DB-2	12.5%	3.1	5.1	26.9	55.8	111.4	109.8	3.4
Low Idle	11	16.0	150	194	299	295	19	Low Idle	19.0%	2.1	3.0	28.5	36.9	56.8	56.0	3.6
Idle	11	27.0	190	348	579	569	23	Idle	19.0%	2.1	5.1	36.1	66.1	110.0	108.1	4.4
N1	179	81.0	143	164	1,870	1,843	33	N1	6.5%	11.6	5.3	9.3	10.7	121.6	119.8	2.1
N2	507	183.8	208	320	5,023	4,955	53	N2	6.5%	33.0	11.9	13.5	20.8	326.5	322.1	3.4
N3	1,034	393.0	497	1,546	14,790	14,599	149	N3	5.2%	53.8	20.4	25.8	80.4	769.1	759.2	7.7
N4	1,549	574.5	401	5,397	21,707	21,480	243	N4	4.4%	68.2	25.3	17.6	237.5	955.1	945.1	10.7
N5	2,225	807.0	603	9,306	29,980	29,583	331	N5	3.8%	84.6	30.7	22.9	353.6	1139.2	1124.2	12.6
N6	2,942	1,021.5	753	11,656	35,316	34,910	355	N6	3.9%	114.7	39.8	29.4	454.6	1377.3	1361.5	13.8
N7	3,665	1,256.3	865	12,056	40,043	39,637	390	N7	3.0%	110.0	37.7	26.0	361.7	1201.3	1189.1	11.7
N8	4,478	1,554.0	1,096	11,772	42,708	42,186	522	N8	16.2%	725.4	251.7	177.6	1907.1	6918.7	6834.1	84.6
							sum =	TOTAL	100.0%	1208.5	436.1	413.6	3585.0	13087.0	12928.9	158.1
							EPA line-haul dut	y cycle weighted bra	ake-specific emi	ssions	0.361	0.34	3.0	10.8	10.7	0.13
								y cycle maximum T				1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.632	8.60	17.84	35.64	35.14	1.08	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.455	13.64	17.64	27.18	26.78	1.73	Low Idle	29.9%	3.3	4.8	44.9	58.0	89.4	88.1	5.7
Idle		2.455	17.27	31.64	52.64	51.72	2.09	Idle	29.9%	3.3	8.1	56.8	104.1	173.1	170.1	6.9
N1		0.453	0.80	0.92	10.45	10.30	0.18	N1	12.4%	22.2	10.0	17.7	20.3	231.9	228.6	4.1
N2		0.363	0.41	0.00	0.04		0.40						39.4	617.8	609.5	6.5
N3		0.000	0.41	0.63	9.91	9.77	0.10	N2	12.3%	62.4	22.6	25.6	39.4	017.0	000.0	
		0.380	0.41	1.50	14.30	9.77 14.12	0.10	N2 N3	12.3% 5.8%	62.4 60.0	22.6 22.8	25.6 28.8	89.7	857.8	846.8	8.6
N4																
N4 N5		0.380	0.48	1.50	14.30	14.12	0.14	N3	5.8%	60.0	22.8	28.8	89.7	857.8	846.8	8.6
		0.380 0.371	0.48 0.26	1.50 3.48	14.30 14.01	14.12 13.87	0.14 0.16	N3 N4	5.8% 3.6%	60.0 55.8	22.8 20.7	28.8 14.4	89.7 194.3	857.8 781.5	846.8 773.3	8.6 8.7
N5		0.380 0.371 0.363	0.48 0.26 0.27	1.50 3.48 4.18	14.30 14.01 13.47	14.12 13.87 13.30	0.14 0.16 0.15	N3 N4 N5	5.8% 3.6% 3.6%	60.0 55.8 80.1	22.8 20.7 29.1	28.8 14.4 21.7	89.7 194.3 335.0	857.8 781.5 1079.3	846.8 773.3 1065.0	8.6 8.7 11.9
N5 N6		0.380 0.371 0.363 0.347	0.48 0.26 0.27 0.26	1.50 3.48 4.18 3.96	14.30 14.01 13.47 12.00	14.12 13.87 13.30 11.87	0.14 0.16 0.15 0.12	N3 N4 N5 N6	5.8% 3.6% 3.6% 1.5%	60.0 55.8 80.1 44.1	22.8 20.7 29.1 15.3	28.8 14.4 21.7 11.3	89.7 194.3 335.0 174.8	857.8 781.5 1079.3 529.7	846.8 773.3 1065.0 523.7	8.6 8.7 11.9 5.3
N5 N6 N7		0.380 0.371 0.363 0.347 0.343	0.48 0.26 0.27 0.26 0.24	1.50 3.48 4.18 3.96 3.29	14.30 14.01 13.47 12.00 10.93	14.12 13.87 13.30 11.87 10.82	0.14 0.16 0.15 0.12 0.11	N3 N4 N5 N6 N7	5.8% 3.6% 3.6% 1.5% 0.2%	60.0 55.8 80.1 44.1 7.3	22.8 20.7 29.1 15.3 2.5	28.8 14.4 21.7 11.3 1.7	89.7 194.3 335.0 174.8 24.1	857.8 781.5 1079.3 529.7 80.1	846.8 773.3 1065.0 523.7 79.3	8.6 8.7 11.9 5.3 0.8
N5 N6 N7		0.380 0.371 0.363 0.347 0.343	0.48 0.26 0.27 0.26 0.24	1.50 3.48 4.18 3.96 3.29	14.30 14.01 13.47 12.00 10.93	14.12 13.87 13.30 11.87 10.82	0.14 0.16 0.15 0.12 0.11 0.12	N3 N4 N5 N6 N7 N8	5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	60.0 55.8 80.1 44.1 7.3 35.8 374.3	22.8 20.7 29.1 15.3 2.5 12.4	28.8 14.4 21.7 11.3 1.7 8.8	89.7 194.3 335.0 174.8 24.1 94.2	857.8 781.5 1079.3 529.7 80.1 341.7	846.8 773.3 1065.0 523.7 79.3 337.5	8.6 8.7 11.9 5.3 0.8 4.2

UP #9715 Test Date 11-03-98 On-Highway Diesel Fuel EM-2677-F Run #3/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	22	41.1	212	417	900	896	33	DB-2	12.5%	2.8	5.1	26.5	52.1	112.5	112.0	4.1
Low Idle	10	17.4	165	208	304	304	23	Low Idle	19.0%	1.9	3.3	31.4	39.5	57.8	57.8	4.4
Idle	10	21.8	148	246	490	490	20	Idle	19.0%	1.9	4.1	28.1	46.7	93.1	93.1	3.8
N1	196	79.0	130	145	1,871	1,868	24	N1	6.5%	12.7	5.1	8.5	9.4	121.6	121.4	1.6
N2	499	185.0	187	294	5,104	5,084	52	N2	6.5%	32.4	12.0	12.2	19.1	331.8	330.5	3.4
N3	1,039	388.0	380	975	14,985	14,957	144	N3	5.2%	54.0	20.2	19.8	50.7	779.2	777.8	7.5
N4	1,550	563.0	405	4,904	21,765	21,709	206	N4	4.4%	68.2	24.8	17.8	215.8	957.7	955.2	9.1
N5	2,222	794.0	579	7,899	29,576	29,521	291	N5	3.8%	84.4	30.2	22.0	300.2	1123.9	1121.8	11.1
N6	2,939	1,009.0	742	10,227	34,702	34,636	332	N6	3.9%	114.6	39.4	28.9	398.9	1353.4	1350.8	12.9
N7	3,665	1,240.0	880	9,828	41,756	41,647	323	N7	3.0%	110.0	37.2	26.4	294.8	1252.7	1249.4	9.7
N8	4,495	1,518.0	972	11,863	41,741	41,575	463	N8	16.2%	728.2	245.9	157.5	1921.8	6762.0	6735.1	75.0
							sum =	TOTAL	100.0%	1211.2	427.3	379.0	3349.1	12945.6	12904.7	142.5
							EPA line-haul dut	y cycle weighted bra	ake-specific emis	ssions	0.353	0.31	2.8	10.7	10.7	0.12
							EPA line-haul dut	y cycle maximum Ti	er 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
	Notch brake	-specific em bsfc	issions HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	Weighted R w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF			w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc	НС				(g/hp-hr) 1.50	DB-2	EPA WF 0.0%	w-BHP	w-bsfc	w-HC	w-CO	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.868 1.740	HC (g/hp-hr) 9.64 16.50	(g/hp-hr) 18.95 20.80	(g/hp-hr) 40.91 30.40	(g/hp-hr) 40.71 30.40	(g/hp-hr) 1.50 2.30	DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.2	w-HC w-(g/hr) 0.0 49.3	w-CO w-(g/hr) 0.0 62.2	w-(g/hr) 0.0 90.9	w-(g/hr) 0.0 90.9	w-(g/hr) 0.0 6.9
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180	HC (g/hp-hr) 9.64 16.50 14.80	(g/hp-hr) 18.95 20.80 24.60	(g/hp-hr) 40.91 30.40 49.00	(g/hp-hr) 40.71 30.40 48.99	(g/hp-hr) 1.50 2.30 2.00	DB-2	EPA WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5	w-HC w-(g/hr) 0.0 49.3 44.3	w-CO w-(g/hr) 0.0 62.2 73.6	w-(g/hr) 0.0 90.9 146.5	w-(g/hr) 0.0 90.9 146.5	w-(g/hr) 0.0 6.9 6.0
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403	HC (g/hp-hr) 9.64 16.50 14.80 0.66	(g/hp-hr) 18.95 20.80 24.60 0.74	(g/hp-hr) 40.91 30.40 49.00 9.55	(g/hp-hr) 40.71 30.40 48.99 9.53	(g/hp-hr) 1.50 2.30 2.00 0.12	DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 24.3	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8	w-HC w-(g/hr) 0.0 49.3 44.3 16.1	w-CO w-(g/hr) 0.0 62.2 73.6 18.0	w-(g/hr) 0.0 90.9 146.5 232.0	w-(g/hr) 0.0 90.9 146.5 231.6	w-(g/hr) 0.0 6.9 6.0 3.0
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10	DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 24.3 61.4	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2	w-(g/hr) 0.0 90.9 146.5 232.0 627.8	w-(g/hr) 0.0 90.9 146.5 231.6 625.4	w-(g/hr) 0.0 6.9 6.0 3.0 6.4
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14	DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 24.3 61.4 60.3	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13	DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 24.3 61.4 60.3 55.8	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37 0.26	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6 20.8	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.26 0.26 0.25	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55 3.48	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31 11.81	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29 11.78	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6 15.1	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4 153.4	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7 520.5	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8 519.5	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5 5.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37 0.26	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6 20.8	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.26 0.26 0.25	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55 3.48	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31 11.81	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29 11.78	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6 15.1	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6 20.8 11.1	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4 153.4	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7 520.5	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8 519.5	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5 5.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357 0.343 0.338	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37 0.26 0.26 0.25 0.24	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55 3.48 2.68	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31 11.81 11.39	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29 11.78 11.36	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13 0.13 0.11	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6 15.1 2.5	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6 20.8 11.1 1.8	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4 153.4	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7 520.5 83.5	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8 519.5 83.3	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5 5.0 0.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.868 1.740 2.180 0.403 0.371 0.373 0.363 0.357 0.343 0.338	HC (g/hp-hr) 9.64 16.50 14.80 0.66 0.37 0.37 0.26 0.26 0.25 0.24	(g/hp-hr) 18.95 20.80 24.60 0.74 0.59 0.94 3.16 3.55 3.48 2.68	(g/hp-hr) 40.91 30.40 49.00 9.55 10.23 14.42 14.04 13.31 11.81 11.39	(g/hp-hr) 40.71 30.40 48.99 9.53 10.19 14.40 14.01 13.29 11.78 11.36	(g/hp-hr) 1.50 2.30 2.00 0.12 0.10 0.14 0.13 0.13 0.11 0.09 0.10	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 3.0 3.0 24.3 61.4 60.3 55.8 80.0 44.1 7.3 36.0 375.1	w-bsfc w-(lb/hp-hr) 0.0 5.2 6.5 9.8 22.8 22.5 20.3 28.6 15.1 2.5 12.1	w-HC w-(g/hr) 0.0 49.3 44.3 16.1 23.0 22.0 14.6 20.8 11.1 1.8 7.8	w-CO w-(g/hr) 0.0 62.2 73.6 18.0 36.2 56.6 176.5 284.4 153.4 19.7 94.9	w-(g/hr) 0.0 90.9 146.5 232.0 627.8 869.1 783.5 1064.7 520.5 83.5 333.9	w-(g/hr) 0.0 90.9 146.5 231.6 625.4 867.5 781.5 1062.8 519.5 83.3 332.6	w-(g/hr) 0.0 6.9 6.0 3.0 6.4 8.4 7.4 10.5 5.0 0.6 3.7

UP No. 9715 Test Results Using High-Sulfur Diesel Fuel

UP #9715 Test Date 10-27-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/3

SwRI Proje	ect 08-2062		Ü							Weighted Resi	ults					
									EPA Line-Haul							
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	33	44.4	201	460	992	981	37	DB-2	12.5%	4.1	5.6	25.1	57.5	124.0	122.6	4.6
Low Idle	11	20.3	215	287	300	296	35	Low Idle	19.0%	2.1	3.9	40.9	54.5	57.0	56.2	6.7
Idle	12	23.3	156	297	510	503	26	ldle	19.0%	2.3	4.4	29.6	56.4	96.9	95.5	4.9
N1	195	79.2	134	166	2,020	1,993	31	N1	6.5%	12.7	5.1	8.7	10.8	131.3	129.6	2.0
N2	498	187.2	187	294	5,461	5,389	67	N2	6.5%	32.4	12.2	12.2	19.1	355.0	350.3	4.4
N3	1,042	393.6	372	1,491	15,536	15,354	202	N3	5.2%	54.2	20.5	19.3	77.5	807.9	798.4	10.5
N4	1,550	572.4	377	4,771	23,230	22,958	330	N4	4.4%	68.2	25.2	16.6	209.9	1022.1	1010.2	14.5
N5	2,224	799.2	623	9,713	31,554	31,218	465	N5	3.8%	84.5	30.4	23.7	369.1	1199.1	1186.3	17.7
N6	2,939	1,016.4	748	11,704	37,264	36,776	536	N6	3.9%	114.6	39.6	29.2	456.5	1453.3	1434.2	20.9
N7	3,662	1,251.6	888	11,810	45,212	44,654	665	N7	3.0%	109.9	37.5	26.6	354.3	1356.4	1339.6	20.0
N8	4,493	1,549.2	1,044	12,408	47,508	46,922	849	N8	16.2%	727.9	251.0	169.1	2010.1	7696.3	7601.4	137.5
							sum =	TOTAL	100.0%	1212.8	435.3	401.0	3675.8	14299.2	14124.3	243.7
							EPA line-haul dut	y cycle weighted bra	ake-specific emis	sions	0.359	0.33	3.0	11.8	11.6	0.20
							EPA line-haul dut	y cycle maximum Ti	er 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual I	Notch brake	-specific em	issions								,	Weighted Re	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.345	6.09	13.94	30.06	29.72	1.12	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.845	19.55	26.09	07.07	00.01	0.40									
Idle			19.55	26.09	27.27	26.91	3.18	Low Idle	29.9%	3.3	6.1	64.3	85.8	89.7	88.5	10.5
		1.942	13.00	26.09	42.50	41.90	2.17	Low Idle Idle	29.9% 29.9%	3.3 3.6	6.1 7.0	64.3 46.6	85.8 88.8	89.7 152.5		10.5 7.8
N1															88.5	
N1 N2		1.942	13.00	24.75	42.50	41.90	2.17	Idle	29.9%	3.6	7.0	46.6	88.8	152.5	88.5 150.3	7.8
		1.942 0.406	13.00 0.69	24.75 0.85	42.50 10.36	41.90 10.22	2.17 0.16	ldle N1	29.9% 12.4%	3.6 24.2	7.0 9.8	46.6 16.6	88.8 20.6	152.5 250.5	88.5 150.3 247.2	7.8 3.8
N2		1.942 0.406 0.376	13.00 0.69 0.38	24.75 0.85 0.59	42.50 10.36 10.97	41.90 10.22 10.82	2.17 0.16 0.13	ldle N1 N2	29.9% 12.4% 12.3%	3.6 24.2 61.3	7.0 9.8 23.0	46.6 16.6 23.0	88.8 20.6 36.2	152.5 250.5 671.7	88.5 150.3 247.2 662.8	7.8 3.8 8.2
N2 N3		1.942 0.406 0.376 0.378	13.00 0.69 0.38 0.36	24.75 0.85 0.59 1.43	42.50 10.36 10.97 14.91	41.90 10.22 10.82 14.74	2.17 0.16 0.13 0.19	Idle N1 N2 N3	29.9% 12.4% 12.3% 5.8%	3.6 24.2 61.3 60.4	7.0 9.8 23.0 22.8	46.6 16.6 23.0 21.6	88.8 20.6 36.2 86.5	152.5 250.5 671.7 901.1	88.5 150.3 247.2 662.8 890.6	7.8 3.8 8.2 11.7
N2 N3 N4		1.942 0.406 0.376 0.378 0.369	13.00 0.69 0.38 0.36 0.24	24.75 0.85 0.59 1.43 3.08	42.50 10.36 10.97 14.91 14.99	41.90 10.22 10.82 14.74 14.81	2.17 0.16 0.13 0.19 0.21	Idle N1 N2 N3 N4	29.9% 12.4% 12.3% 5.8% 3.6%	3.6 24.2 61.3 60.4 55.8	7.0 9.8 23.0 22.8 20.6	46.6 16.6 23.0 21.6 13.6	88.8 20.6 36.2 86.5 171.8	152.5 250.5 671.7 901.1 836.3	88.5 150.3 247.2 662.8 890.6 826.5	7.8 3.8 8.2 11.7 11.9
N2 N3 N4 N5		1.942 0.406 0.376 0.378 0.369 0.359	13.00 0.69 0.38 0.36 0.24 0.28	24.75 0.85 0.59 1.43 3.08 4.37	42.50 10.36 10.97 14.91 14.99 14.19	41.90 10.22 10.82 14.74 14.81 14.04	2.17 0.16 0.13 0.19 0.21 0.21	Idle N1 N2 N3 N4 N5	29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	3.6 24.2 61.3 60.4 55.8 80.1	7.0 9.8 23.0 22.8 20.6 28.8	46.6 16.6 23.0 21.6 13.6 22.4	88.8 20.6 36.2 86.5 171.8 349.7	152.5 250.5 671.7 901.1 836.3 1135.9	88.5 150.3 247.2 662.8 890.6 826.5 1123.8	7.8 3.8 8.2 11.7 11.9 16.7
N2 N3 N4 N5 N6		1.942 0.406 0.376 0.378 0.369 0.359 0.346	13.00 0.69 0.38 0.36 0.24 0.28 0.25	24.75 0.85 0.59 1.43 3.08 4.37 3.98	42.50 10.36 10.97 14.91 14.99 14.19 12.68	41.90 10.22 10.82 14.74 14.81 14.04 12.51	2.17 0.16 0.13 0.19 0.21 0.21 0.18	Idle N1 N2 N3 N4 N5	29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	3.6 24.2 61.3 60.4 55.8 80.1 44.1	7.0 9.8 23.0 22.8 20.6 28.8 15.2	46.6 16.6 23.0 21.6 13.6 22.4 11.2	88.8 20.6 36.2 86.5 171.8 349.7 175.6	152.5 250.5 671.7 901.1 836.3 1135.9 559.0	88.5 150.3 247.2 662.8 890.6 826.5 1123.8 551.6	7.8 3.8 8.2 11.7 11.9 16.7 8.0
N2 N3 N4 N5 N6 N7		1.942 0.406 0.376 0.378 0.369 0.359 0.346 0.342	13.00 0.69 0.38 0.36 0.24 0.28 0.25 0.24	24.75 0.85 0.59 1.43 3.08 4.37 3.98 3.23	42.50 10.36 10.97 14.91 14.99 14.19 12.68 12.35	41.90 10.22 10.82 14.74 14.81 14.04 12.51 12.19	2.17 0.16 0.13 0.19 0.21 0.21 0.18 0.18	Idle N1 N2 N3 N4 N5 N6 N7	29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	3.6 24.2 61.3 60.4 55.8 80.1 44.1 7.3	7.0 9.8 23.0 22.8 20.6 28.8 15.2 2.5	46.6 16.6 23.0 21.6 13.6 22.4 11.2	88.8 20.6 36.2 86.5 171.8 349.7 175.6 23.6	152.5 250.5 671.7 901.1 836.3 1135.9 559.0 90.4	88.5 150.3 247.2 662.8 890.6 826.5 1123.8 551.6 89.3	7.8 3.8 8.2 11.7 11.9 16.7 8.0 1.3
N2 N3 N4 N5 N6 N7		1.942 0.406 0.376 0.378 0.369 0.359 0.346 0.342	13.00 0.69 0.38 0.36 0.24 0.28 0.25 0.24	24.75 0.85 0.59 1.43 3.08 4.37 3.98 3.23	42.50 10.36 10.97 14.91 14.99 14.19 12.68 12.35	41.90 10.22 10.82 14.74 14.81 14.04 12.51 12.19	2.17 0.16 0.13 0.19 0.21 0.21 0.18 0.18	Idle N1 N2 N3 N4 N5 N6 N7	29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	3.6 24.2 61.3 60.4 55.8 80.1 44.1 7.3 35.9 376.0	7.0 9.8 23.0 22.8 20.6 28.8 15.2 2.5 12.4	46.6 16.6 23.0 21.6 13.6 22.4 11.2 1.8 8.4	88.8 20.6 36.2 86.5 171.8 349.7 175.6 23.6 99.3	152.5 250.5 671.7 901.1 836.3 1135.9 559.0 90.4 380.1	88.5 150.3 247.2 662.8 890.6 826.5 1123.8 551.6 89.3 375.4	7.8 3.8 8.2 11.7 11.9 16.7 8.0 1.3 6.8

UP #9715 Test Date 10-28-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/3

SwRI Proje	ect 08-2062	-001	· ·						EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	23	40.3	198	528	814	801	42	DB-2	12.5%	2.9	5.0	24.8	66.0	101.8	100.2	5.3
Low Idle	10	21.3	204	315	292	287	41	Low Idle	19.0%	1.9	4.0	38.8	59.9	55.5	54.5	7.8
Idle	11	22.8	152	359	469	462	29	Idle	19.0%	2.1	4.3	28.9	68.2	89.1	87.8	5.5
N1	194	83.5	134	189	2,112	2,085	50	N1	6.5%	12.6	5.4	8.7	12.3	137.3	135.5	3.3
N2	495	186.0	160	299	5,333	5,269	105	N2	6.5%	32.2	12.1	10.4	19.4	346.6	342.5	6.8
N3	1,021	394.3	337	1,577	15,142	14,957	289	N3	5.2%	53.1	20.5	17.5	82.0	787.4	777.8	15.0
N4	1,538	571.5	368	5,230	22,363	22,106	399	N4	4.4%	67.7	25.1	16.2	230.1	984.0	972.7	17.6
N5	2,224	800.4	544	9,512	32,173	31,725	537	N5	3.8%	84.5	30.4	20.7	361.5	1222.6	1205.6	20.4
N6	2,940	1,019.5	687	12,320	37,713	37,187	638	N6	3.9%	114.7	39.8	26.8	480.5	1470.8	1450.3	24.9
N7	3,666	1,252.8	802	11,948	43,658	43,078	744	N7	3.0%	110.0	37.6	24.1	358.4	1309.7	1292.4	22.3
N8	4,484	1,557.0	976	14,018	45,730	45,041	1,014	N8	16.2%	726.4	252.2	158.1	2270.9	7408.3	7296.7	164.3
	,	,		,	,	,	sum =	TOTAL	100.0%	1208.0	436.6	374.9	4009.2	13913.0	13715.8	293.1
							EPA line-haul du	ity cycle weighted br	ake-specific emi	ssions	0.361	0.31	3.3	11.5	11.4	0.24
								ity cycle maximum T				1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual I	Notch brake	-specific em	issions						,			Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.752	8.61	22.96	35.39	34.84	1.83	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		2.130	20.40	31.50	29.20	28.70	4.10	Low Idle	29.9%	3.0	6.4	61.0	94.2	87.3	85.8	12.3
Idle		2.073	13.82	32.64	42.64	42.00	2.64	Idle	29.9%	3.3	6.8	45.4	107.3	140.2	138.1	8.7
N1		0.430	0.69	0.97	10.89	10.74	0.26	N1	12.4%	24.1	10.4	16.6	23.4	261.9	258.5	6.2
N2		0.376	0.32	0.60	10.77	10.64	0.21	N2	12.3%	60.9	22.9	19.7	36.8	656.0	648.1	12.9
N3		0.386	0.33	1.54	14.83	14.65	0.28	N3	5.8%	59.2	22.9	19.5	91.5	878.2	867.5	16.8
N4		0.372	0.24	3.40	14.54	14.37	0.26	N4	3.6%	55.4	20.6	13.2	188.3	805.1	795.8	14.4
N5		0.360	0.24	4.28	14.47	14.27	0.24	N5	3.6%	80.1	28.8	19.6	342.4	1158.2	1142.1	19.3
N6		0.347	0.23	4.19	12.83	12.65	0.22	N6	1.5%	44.1	15.3	10.3	184.8	565.7	557.8	9.6
N7		0.342	0.22	3.26	11.91	11.75	0.20	N7	0.2%	7.3	2.5	1.6	23.9	87.3	86.2	1.5
N8		0.347	0.22	3.13	10.20	10.04	0.23	N8	0.8%	35.9	12.5	7.8	112.1	365.8	360.3	8.1
								TOTAL	100.0%	373.2	148.9	214.8	1204.8	5005.8	4940.3	109.7
							EPA switch duty	cycle weighted brak	e-specific emiss	ions	0.399	0.58	3.23	13.41	13.24	0.29
								e maximum Tier 0	·			2.10	8.0	14.0	14.0	0.72

UP #9715 Test Date 11-03-98 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #3/3

SwRI Proj	ect 08-2062	-001							۱ EPA Line-Haul	Weighted Resu	ılts					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	23	37.5	164	399	818	816	30	DB-2	12.5%	2.9	4.7	20.5	49.9	102.3	102.0	3.8
Low Idle	10	24.0	238	330	343	342	39	Low Idle	19.0%	1.9	4.6	45.2	62.7	65.2	65.0	7.4
Idle	10	29.3	171	362	646	643	34	Idle	19.0%	1.9	5.6	32.5	68.8	122.7	122.2	6.5
N1	197	82.0	122	150	2,066	2,059	31	N1	6.5%	12.8	5.3	7.9	9.8	134.3	133.9	2.0
N2	501	185.0	177	263	5,274	5,254	77	N2	6.5%	32.6	12.0	11.5	17.1	342.8	341.5	5.0
N3	1,033	387.0	368	941	14,752	14,686	203	N3	5.2%	53.7	20.1	19.1	48.9	767.1	763.7	10.6
N4	1,548	569.0	398	3,344	22,695	22,622	317	N4	4.4%	68.1	25.0	17.5	147.1	998.6	995.4	13.9
N5	2,223	799.0	590	7,737	30,515	30,457	298	N5	3.8%	84.5	30.4	22.4	294.0	1159.6	1157.4	11.3
N6	2,939	1,012.0	718	10,482	35,525	35,457	539	N6	3.9%	114.6	39.5	28.0	408.8	1385.5	1382.8	21.0
N7	3,665	1,243.0	883	10,286	42,498	42,362	621	N7	3.0%	110.0	37.3	26.5	308.6	1274.9	1270.8	18.6
N8	4,445	1,544.0	1,028	10,841	45,523	45,435	841	N8	16.2%	720.1	250.1	166.5	1756.2	7374.7	7360.4	136.2
							sum =	TOTAL	100.0%	1203.0	434.6	397.7	3171.9	13727.7	13695.0	236.4
							EPA line-haul duty	cycle weighted bra	ake-specific emis	sions	0.361	0.33	2.6	11.4	11.4	0.20
							EPA line-haul duty					1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions								,	Weighted R	esults			
		bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch																
DB-2		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(q/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DD-2		(lb/hp-hr) 1.630	(g/hp-hr) 7.13	(g/hp-hr) 17.35	(g/hp-hr) 35.57	(g/hp-hr) 35.46	(g/hp-hr) 1.30	Notch DB-2		0.0		w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Low Idle									WF		w-(lb/hp-hr)					
		1.630	7.13	17.35	35.57	35.46	1.30	DB-2	WF 0.0%	0.0	w-(lb/hp-hr) 0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.630 2.400	7.13 23.80	17.35 33.00	35.57 34.30	35.46 34.19	1.30 3.90	DB-2 Low Idle	WF 0.0% 29.9%	0.0 3.0	w-(lb/hp-hr) 0.0 7.2	0.0 71.2	0.0 98.7	0.0 102.6	0.0 102.2	0.0 11.7
Low Idle Idle		1.630 2.400 2.930	7.13 23.80 17.10	17.35 33.00 36.20	35.57 34.30 64.60	35.46 34.19 64.31	1.30 3.90 3.40	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-(lb/hp-hr) 0.0 7.2 8.8	0.0 71.2 51.1	0.0 98.7 108.2	0.0 102.6 193.2	0.0 102.2 192.3	0.0 11.7 10.2
Low Idle Idle N1		1.630 2.400 2.930 0.416	7.13 23.80 17.10 0.62	17.35 33.00 36.20 0.76	35.57 34.30 64.60 10.49	35.46 34.19 64.31 10.45	1.30 3.90 3.40 0.16	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 24.4	w-(lb/hp-hr) 0.0 7.2 8.8 10.2	0.0 71.2 51.1 15.1	0.0 98.7 108.2 18.6	0.0 102.6 193.2 256.2	0.0 102.2 192.3 255.4	0.0 11.7 10.2 3.8
Low Idle Idle N1 N2		1.630 2.400 2.930 0.416 0.369	7.13 23.80 17.10 0.62 0.35	17.35 33.00 36.20 0.76 0.52	35.57 34.30 64.60 10.49 10.53	35.46 34.19 64.31 10.45 10.49	1.30 3.90 3.40 0.16 0.15	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 24.4 61.6	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8	0.0 71.2 51.1 15.1 21.8	0.0 98.7 108.2 18.6 32.3	0.0 102.6 193.2 256.2 648.7	0.0 102.2 192.3 255.4 646.2	0.0 11.7 10.2 3.8 9.5
Low Idle Idle N1 N2 N3		1.630 2.400 2.930 0.416 0.369 0.375	7.13 23.80 17.10 0.62 0.35 0.36	17.35 33.00 36.20 0.76 0.52 0.91	35.57 34.30 64.60 10.49 10.53 14.28	35.46 34.19 64.31 10.45 10.49 14.22	1.30 3.90 3.40 0.16 0.15 0.20	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 24.4 61.6 59.9	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4	0.0 71.2 51.1 15.1 21.8 21.3	0.0 98.7 108.2 18.6 32.3 54.6	0.0 102.6 193.2 256.2 648.7 855.6	0.0 102.2 192.3 255.4 646.2 851.8	0.0 11.7 10.2 3.8 9.5 11.8
Low Idle Idle N1 N2 N3 N4		1.630 2.400 2.930 0.416 0.369 0.375 0.368	7.13 23.80 17.10 0.62 0.35 0.36 0.26	17.35 33.00 36.20 0.76 0.52 0.91 2.16	35.57 34.30 64.60 10.49 10.53 14.28 14.66	35.46 34.19 64.31 10.45 10.49 14.22 14.61	1.30 3.90 3.40 0.16 0.15 0.20	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 24.4 61.6 59.9 55.7	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4 20.5	0.0 71.2 51.1 15.1 21.8 21.3 14.3	0.0 98.7 108.2 18.6 32.3 54.6 120.4	0.0 102.6 193.2 256.2 648.7 855.6 817.0	0.0 102.2 192.3 255.4 646.2 851.8 814.4	0.0 11.7 10.2 3.8 9.5 11.8 11.4
Low Idle Idle N1 N2 N3 N4 N5		1.630 2.400 2.930 0.416 0.369 0.375 0.368 0.359	7.13 23.80 17.10 0.62 0.35 0.36 0.26 0.27	17.35 33.00 36.20 0.76 0.52 0.91 2.16 3.48	35.57 34.30 64.60 10.49 10.53 14.28 14.66 13.73	35.46 34.19 64.31 10.45 10.49 14.22 14.61 13.70	1.30 3.90 3.40 0.16 0.15 0.20 0.20 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 24.4 61.6 59.9 55.7 80.0	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4 20.5 28.8	0.0 71.2 51.1 15.1 21.8 21.3 14.3 21.2	0.0 98.7 108.2 18.6 32.3 54.6 120.4 278.5	0.0 102.6 193.2 256.2 648.7 855.6 817.0 1098.5	0.0 102.2 192.3 255.4 646.2 851.8 814.4 1096.4	0.0 11.7 10.2 3.8 9.5 11.8 11.4
Low Idle Idle N1 N2 N3 N4 N5 N6		1.630 2.400 2.930 0.416 0.369 0.375 0.368 0.359 0.344	7.13 23.80 17.10 0.62 0.35 0.36 0.26 0.27 0.24	17.35 33.00 36.20 0.76 0.52 0.91 2.16 3.48 3.57	35.57 34.30 64.60 10.49 10.53 14.28 14.66 13.73 12.09	35.46 34.19 64.31 10.45 10.49 14.22 14.61 13.70 12.06	1.30 3.90 3.40 0.16 0.15 0.20 0.20 0.13 0.18	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 3.0 24.4 61.6 59.9 55.7 80.0 44.1	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4 20.5 28.8 15.2	0.0 71.2 51.1 15.1 21.8 21.3 14.3 21.2 10.8	0.0 98.7 108.2 18.6 32.3 54.6 120.4 278.5 157.2	0.0 102.6 193.2 256.2 648.7 855.6 817.0 1098.5 532.9	0.0 102.2 192.3 255.4 646.2 851.8 814.4 1096.4 531.9	0.0 11.7 10.2 3.8 9.5 11.8 11.4 10.7 8.1
Low Idle Idle N1 N2 N3 N4 N5 N6		1.630 2.400 2.930 0.416 0.369 0.375 0.368 0.359 0.344 0.339	7.13 23.80 17.10 0.62 0.35 0.36 0.26 0.27 0.24 0.24	17.35 33.00 36.20 0.76 0.52 0.91 2.16 3.48 3.57 2.81	35.57 34.30 64.60 10.49 10.53 14.28 14.66 13.73 12.09 11.60	35.46 34.19 64.31 10.45 10.49 14.22 14.61 13.70 12.06 11.56	1.30 3.90 3.40 0.16 0.15 0.20 0.20 0.13 0.18 0.17	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2%	0.0 3.0 3.0 24.4 61.6 59.9 55.7 80.0 44.1 7.3	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4 20.5 28.8 15.2 2.5	0.0 71.2 51.1 15.1 21.8 21.3 14.3 21.2 10.8 1.8	0.0 98.7 108.2 18.6 32.3 54.6 120.4 278.5 157.2 20.6	0.0 102.6 193.2 256.2 648.7 855.6 817.0 1098.5 532.9 85.0	0.0 102.2 192.3 255.4 646.2 851.8 814.4 1096.4 531.9 84.7	0.0 11.7 10.2 3.8 9.5 11.8 11.4 10.7 8.1
Low Idle Idle N1 N2 N3 N4 N5 N6		1.630 2.400 2.930 0.416 0.369 0.375 0.368 0.359 0.344 0.339	7.13 23.80 17.10 0.62 0.35 0.36 0.26 0.27 0.24 0.24	17.35 33.00 36.20 0.76 0.52 0.91 2.16 3.48 3.57 2.81	35.57 34.30 64.60 10.49 10.53 14.28 14.66 13.73 12.09 11.60	35.46 34.19 64.31 10.45 10.49 14.22 14.61 13.70 12.06 11.56	1.30 3.90 3.40 0.16 0.15 0.20 0.20 0.13 0.18 0.17	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8% 100.0%	0.0 3.0 3.0 24.4 61.6 59.9 55.7 80.0 44.1 7.3 35.6 374.7	w-(lb/hp-hr) 0.0 7.2 8.8 10.2 22.8 22.4 20.5 28.8 15.2 2.5 12.4	0.0 71.2 51.1 15.1 21.8 21.3 14.3 21.2 10.8 1.8 8.2	0.0 98.7 108.2 18.6 32.3 54.6 120.4 278.5 157.2 20.6 86.7	0.0 102.6 193.2 256.2 648.7 855.6 817.0 1098.5 532.9 85.0 364.2	0.0 102.2 192.3 255.4 646.2 851.8 814.4 1096.4 531.9 84.7 363.5	0.0 11.7 10.2 3.8 9.5 11.8 11.4 10.7 8.1 1.2 6.7

UP No. 9715 Test Results Using 0.3% Sulfur Diesel Fuel

UP #9715 Test Date 10-30-98 0.3% Sulfur Diesel Fuel EM-2708-F Run #1/3

SwRI Proj	ect 08-2062-	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	33	42.6	218	446	935	925	35	DB-2	12.5%	4.1	5.3	27.3	55.8	116.9	115.6	4.4
Low Idle	11	21.6	228	264	358	355	32	Low Idle	19.0%	2.1	4.1	43.3	50.2	68.0	67.4	6.1
Idle	11	25.8	183	313	560	554	24	Idle	19.0%	2.1	4.9	34.8	59.5	106.4	105.3	4.6
N1	197	79.0	138	155	1,967	1,948	24	N1	6.5%	12.8	5.1	9.0	10.1	127.9	126.6	1.6
N2	502	187.0	183	276	4,720	4,672	51	N2	6.5%	32.6	12.2	11.9	17.9	306.8	303.6	3.3
N3	1,023	390.0	370	1,425	14,905	14,779	155	N3	5.2%	53.2	20.3	19.2	74.1	775.1	768.5	8.1
N4	1,551	569.0	385	4,829	21,868	21,629	237	N4	4.4%	68.2	25.0	16.9	212.5	962.2	951.7	10.4
N5	2,224	802.0	580	9,404	35,074	35,183	355	N5	3.8%	84.5	30.5	22.0	357.4	1332.8	1337.0	13.5
N6	2,942	1,021.0	743	12,925	36,141	35,850	426	N6	3.9%	114.7	39.8	29.0	504.1	1409.5	1398.2	16.6
N7	3,744	1,254.0	882	11,993	41,992	41,624	486	N7	3.0%	112.3	37.6	26.5	359.8	1259.8	1248.7	14.6
N8	4,493	1,548.0	1,009	12,170	45,683	47,213	628	N8	16.2%	727.9	250.8	163.5	1971.5	7400.6	7648.6	101.7
							sum =	TOTAL	100.0%	1214.6	435.6	403.3	3672.7	13865.9	14071.2	184.8
							EPA line-haul du	ity cycle weighted b	rake-specific emi	ssions	0.359	0.33	3.0	11.4	11.6	0.15
							EPA line-haul du	uty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.291	6.61	13.52	28.33	28.02	1.06	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.964	20.73	24.00	32.55	32.24	2.91	Low Idle	29.9%	3.3	6.5	68.2	78.9	107.0	106.1	9.6
Idle		2.345	16.64	28.45	50.91	50.40	2.18	Idle	29.9%	3.3	7.7	54.7	93.6	167.4	165.8	7.2
N1		0.401	0.70	0.79	9.98	9.89	0.12	N1	12.4%	24.4	9.8	17.1	19.2	243.9	241.6	3.0
N2		0.373	0.36	0.55	9.40	9.31	0.10	N2	12.3%	61.7	23.0	22.5	33.9	580.6	574.6	6.3
N3		0.381	0.36	1.39	14.57	14.45	0.15	N3	5.8%	59.3	22.6	21.5	82.7	864.5	857.2	9.0
N4		0.367	0.25	3.11	14.10	13.95	0.15	N4	3.6%	55.8	20.5	13.9	173.8	787.2	778.6	8.5
N5		0.361	0.26	4.23	15.77	15.82	0.16	N5	3.6%	80.1	28.9	20.9	338.5	1262.7	1266.6	12.8
N6		0.347	0.25	4.39	12.28	12.19	0.14	N6	1.5%	44.1	15.3	11.1	193.9	542.1	537.8	6.4
N7		0.335	0.24	3.20	11.22	11.12	0.13	N7	0.2%	7.5	2.5	1.8	24.0	84.0	83.2	1.0
N8		0.345	0.22	2.71	10.17	10.51	0.14	N8	0.8%	35.9	12.4	8.1	97.4	365.5	377.7	5.0
								TOTAL	100.0%	375.5	149.2	239.7	1136.0	5004.9	4989.1	68.7
							EPA switch duty	cycle weighted bra	ke-specific emiss	ions	0.397	0.64	3.02	13.33	13.28	0.18

UP #9715 Test Date 11-02-98 0.3% Sulfur Diesel Fuel EM-2708-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	24 10 197 500 1,041 1,548 2,220 2,939 3,667 4,451	40.7 18.6 28.8 84.0 189.0 397.0 573.0 802.0 1,021.0 1,249.0 1,553.0	194 198 204 172 221 393 362 565 707 909 1,014	405 277 388 215 346 1,467 4,961 9,609 13,292 11,883 14,396	888 272 630 2,564 6,592 15,375 22,250 30,779 35,613 43,597 45,016	877 268 621 2,533 6,513 15,208 22,031 30,422 35,240 43,091 44,561	42 30 31 32 69 205 273 410 500 511 803 sum =	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	12.5% 19.0% 19.0% 6.5% 6.5% 5.2% 4.4% 3.8% 3.9% 3.0% 16.2% 100.0%	3.0 1.9 1.9 12.8 32.5 54.1 68.1 84.4 114.6 110.0 721.1 1204.4	5.1 3.5 5.5 5.5 12.3 20.6 25.2 30.5 39.8 37.5 251.6 437.0	24.3 37.6 38.8 11.2 14.4 20.4 15.9 21.5 27.6 27.3 164.3 403.1	50.6 52.6 73.7 14.0 22.5 76.3 218.3 365.1 518.4 356.5 2332.2 4080.2	111.0 51.7 119.7 166.7 428.5 799.5 979.0 1169.6 1388.9 1307.9 7292.6 13815.0	109.6 51.0 118.0 164.6 423.4 790.8 969.4 1156.0 1374.4 1292.7 7218.9 13668.9	5.3 5.7 5.9 2.1 4.5 10.7 12.0 15.6 19.5 15.3 130.1 226.6
								ity cycle weighted br ity cycle maximum T		ssions	0.363	0.33 1.00	3.4 5.0	11.5 9.5	11.3 9.5	0.19 0.60
Individual N	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.696 1.860 2.880 0.426 0.378 0.381 0.370 0.361 0.347 0.341	HC (g/hp-hr) 8.08 19.80 20.40 0.87 0.44 0.38 0.23 0.25 0.24 0.25 0.23	CO (g/hp-hr) 16.88 27.70 38.80 1.09 0.69 1.41 3.20 4.33 4.52 3.24 3.23	Corr. NOx (g/hp-hr) 37.00 27.20 63.00 13.02 13.18 14.77 14.37 13.86 12.12 11.89 10.11	KH-NOx (g/hp-hr) 36.55 26.84 62.11 12.86 13.03 14.61 14.23 13.70 11.99 11.75 10.01	PM (g/hp-hr) 1.75 3.00 3.10 0.16 0.14 0.20 0.18 0.18 0.17 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	w-BHP 0.0 3.0 3.0 24.4 61.5 60.4 55.7 79.9 44.1 7.3 35.6 375.0	w-bsfc w-(lb/hp-hr) 0.0 5.6 8.6 10.4 23.2 23.0 20.6 28.9 15.3 2.5 12.4 150.6	Weighted R w-HC w-(g/hr) 0.0 59.2 61.0 21.3 27.2 22.8 13.0 20.3 10.6 1.8 8.1 245.4	w-CO w-(g/hr) 0.0 82.8 116.0 26.7 42.6 85.1 178.6 345.9 199.4 23.8 115.2 1216.0	w-NOx w-(g/hr) 0.0 81.3 188.4 317.9 810.8 891.8 801.0 1108.0 1534.2 87.2 360.1 5180.8	w-KH-NOx w-(g/hr) 0.0 80.2 185.7 314.0 801.2 882.1 793.1 1095.2 528.6 86.2 356.5 5122.8	w-PM w-(g/hr) 0.0 9.3 4.0 8.5 11.9 9.8 14.8 7.5 1.0 6.4 82.1

UP #9715 Test Date 11-04-98 0.3% Sulfur Diesel Fuel EM-2708-F Run #3/3

UP #9715	Test Date	11-04-98 0.	3% Sulfur Di	esel Fuel EM	1-2708-F Run	#3/3										
SwRI Proje	ect 08-2062-	001								Weighted Resi	ults					
									EPA Line-Haul	•						
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	23	46.0	169	410	831	825	44	DB-2	12.5%	2.9	5.8	21.1	51.3	103.9	103.1	5.5
Low Idle	10	19.8	196	271	278	275	34	Low Idle	19.0%	1.9	3.8	37.2	51.5	52.8	52.3	6.5
Idle	10	23.3	136	288	510	506	27	Idle	19.0%	1.9	4.4	25.8	54.7	96.9	96.2	5.1
N1	195	81.0	120	148	1,998	1,982	33	N1	6.5%	12.7	5.3	7.8	9.6	129.9	128.8	2.1
N2	500	188.0	180	267	5,296	5,262	68	N2	6.5%	32.5	12.2	11.7	17.4	344.2	342.0	4.4
N3	1,041	389.0	370	944	14,633	14,523	189	N3	5.2%	54.1	20.2	19.2	49.1	760.9	755.2	9.8
N4	1,550	567.0	396	3,325	22,159	21,976	252	N4	4.4%	68.2	24.9	17.4	146.3	975.0	966.9	11.1
N5	2,221	794.0	586	7,672	29,686	29,473	300	N5	3.8%	84.4	30.2	22.3	291.5	1128.1	1120.0	11.4
N6	2,942	1,009.0	716	10,428	34,763	34,539	382	N6	3.9%	114.7	39.4	27.9	406.7	1355.8	1347.0	14.9
N7	3,664	1,234.0	878	10,190	41,444	41,133	514	N7	3.0%	109.9	37.0	26.3	305.7	1243.3	1234.0	15.4
N8	4,469	1,527.0	1,018	10,698	44,013	43,682	748	N8	16.2%	724.0	247.4	164.9	1733.1	7130.1	7076.6	121.2
							sum =	TOTAL	100.0%	1207.2	430.5	381.8	3116.8	13320.9	13222.2	207.5
							EPA line-haul du	uty cycle weighted bra	ake-specific emi	ssions	0.357	0.32	2.6	11.0	11.0	0.17
							EPA line-haul du	uty cycle maximum Ti	er 0			1.00	5.0	9.5	9.5	0.60
								EP	A Switch Cycle							
Individual I	Notch brake	-specific em	issions						,			Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.000	7.35	17.83	36.13	35.86	1.91	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.980	19.60	27.10	27.80	27.54	3.40	Low Idle	29.9%	3.0	5.9	58.6	81.0	83.1	82.4	10.2
ldle		2.330	13.60	28.80	51.00	50.64	2.70	Idle	29.9%	3.0	7.0	40.7	86.1	152.5	151.4	8.1
N1		0.415	0.62	0.76	10.25	10.16	0.17	N1	12.4%	24.2	10.0	14.9	18.4	247.8	245.7	4.1
N2		0.376	0.36	0.53	10.59	10.52	0.14	N2	12.3%	61.5	23.1	22.1	32.8	651.4	647.2	8.4
N3		0.374	0.36	0.91	14.06	13.95	0.18	N3	5.8%	60.4	22.6	21.5	54.8	848.7	842.3	11.0
N4		0.366	0.26	2.15	14.30	14.18	0.16	N4	3.6%	55.8	20.4	14.3	119.7	797.7	791.1	9.1
N5		0.357	0.26	3.45	13.37	13.27	0.14	N5	3.6%	80.0	28.6	21.1	276.2	1068.7	1061.0	10.8
N6		0.343	0.24	3.54	11.82	11.74	0.13	N6	1.5%	44.1	15.1	10.7	156.4	521.4	518.1	5.7
N7		0.337	0.24	2.78	11.31	11.23	0.14	N7	0.2%	7.3	2.5	1.8	20.4	82.9	82.3	1.0
N8		0.342	0.23	2.39	9.85	9.77	0.17	N8	0.8%	35.8	12.2	8.1	85.6	352.1	349.5	6.0
								TOTAL	100.0%	375.0	147.4	213.7	931.4	4806.3	4771.0	74.3
							EPA switch duty	cycle weighted brake	e-specific emissi	ions	0.393	0.57	2.48	12.82	12.72	0.20
							EPA switch cycle	e maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP No. 9715 Smoke Test Summary

SMOKE TEST SUMMARY FOR UP NO. 9715

Run #	ss	30-sec	3-sec
Carb Diesel	(EM-2663	3-F)	
# 1 # 2 # 3 Avg COV	16 11 15 14 19%	17 17 20 18 10%	71 65 69 68 4%
On-Highway	/ Diesel (I	EM-2677-F)
# 1 # 2 # 3 Avg cov	8 9 11 9 16%	13 14 15 14 7%	60 64 69 64 7%
Nonroad Hig	gh Sulfur	Diesel (EN	1-2664-F)
# 1 # 2 # 3 Avg	5 19 9 11	6 14 13 11	38 61 57 52

Fuel #4, Nonroad 0.3% Sulfur Diesel (EM-2708-F)

24%

66% 40%

# 1	8	13	61
• •	_	. •	
# 2	13	14	53
# 3	9	12	49
Avg	10	13	54
COV	26%	8%	119

updated 11/18/98 sgf

cov

UP No. 9733 Test Summary

EPA Line	e-Haul Duty	Cycle We	ighting Fa	ctors				EPA Sv	vitcher Duty	Cycle Wei	ghting Fac	ctors			
				EPA								EPA			
	obs bsfc	HC	CO	NOx	KH-NOx	PM	UP 9733		obs bsfc	HC	CO	NOx	KH-NOx	PM	
Carh Die	lb/hp-hr esel (EM-266	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	GE DASH9-44CW updated 06-29-99	Carh Di	lb/hp-hr iesel (EM-266	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr	
Carb Die	361 (LIVI-200	,o-i <i>)</i>					updated 00-29-99	Caib Di	lesei (Livi-200	,u-i)					
	0.357	0.32	3.5	10.922	10.703	0.14			0.397	0.55	3.23	12.978	12.725	0.17	
	0.357	0.33	3.0	11.026	10.942	0.11			0.397	0.55	2.88	13.099	13.002	0.15	
	0.356	0.30	3.5	10.931	10.833	0.12			0.387	0.47	3.16	12.735	12.608	0.14	
Avg	0.357	0.316	3.30	10.960	10.826	0.126		Avg	0.394	0.525	3.09	12.937	12.778	0.155	
cov	0.2%	5.1%	8.4%	0.5%	1.1%	13.0%		cov	1.5%	8.3%	6.0%	1.4%	1.6%	10.1%	
On-High	way Diesel ((EM-2677-	·F)					On-Hig	hway Diesel	(EM-2677-	F)				
	0.359	0.32	3.4	11.111	11.030	0.13			0.397	0.55	3.13	13.402	13.294	0.15	
	0.359	0.32	3.4	11.245	11.148	0.13			0.399	0.62	2.92	13.512	13.397	0.13	
	0.363	0.31	3.9	11.290	11.134	0.14			0.401	0.55	3.55	13.570	13.378	0.17	
Avg	0.361	0.321	3.46	11.215	11.104	0.132		Avg	0.399	0.574	3.20	13.495	13.356	0.164	
cov	0.7%	3.9%	10.9%	0.8%	0.6%	4.5%		cov	0.5%	6.6%	10.0%	0.6%	0.4%	7.5%	
Nonroad	l High Sulfu	r Diesel (E	EM-2664-F))				Nonroa	d High Sulfu	r Diesel (E	M-2664-F))			
	0.360	0.30	3.5	11.572	11.485	0.21			0.398	0.54	3.19	13.921	13.820	0.26	
	0.361	0.29	3.5	11.726	11.570	0.20			0.399	0.53	3.03	14.080	13.882	0.26	
Ava	0.361 0.361	0.31 0.300	3.6 3.54	11.665 11.654	11.571 11.542	0.20 0.203		Ava	0.398 0.398	0.53 0.535	3.27 3.16	13.777 13.926	13.656 13.786	0.23 0.247	
Avg cov	0.361	2.3%	1.3%	0.7%	0.4%	2.3%		Avg cov	0.396	1.4%	3.16	1.1%	0.8%	6.4%	
COV	0.170	2.070	1.070	0.7 70	0.470	2.070		COV	0.270	1.470	0.070	1.170	0.070	0.470	
0.3% Su	lfur Diesel (I	EM-2708-F	=)					0.3% St	ulfur Diesel (EM-2708-F	=)				
	0.361	0.30	3.5	11.461	11.390	0.16			0.399	0.60	3.10	13.886	13.794	0.20	
	0.362	0.31	3.4	11.610	11.480	0.17			0.399	0.57	2.95	13.992	13.816	0.21	
	0.362	0.30	3.6	11.510	11.356	0.18			0.400	0.54	3.32	13.787	13.597	0.21	
Avg	0.361	0.304	3.49	11.527	11.409	0.171		Avg	0.400	0.573	3.12	13.889	13.736	0.206	
cov	0.2%	0.8%	2.2%	0.7%	0.6%	4.4%		cov	0.2%	5.3%	6.0%	0.7%	0.9%	4.4%	
	-1.1%	5%	-7%	-6%	-6%	-38%	carb vs HS		-1.2%	-2%	-2%	-7%	-7%	-37%	carb vs HS
	-0.1%	7%	-2%	-4%	-4%	-35%	on-hwy vs HS		0.2%	7%	1%	-3%	-3%	-34%	on-hwy vs HS
	-1.0%	-2%	-5%	-2%	-3%	-4%	carb vs on-hwy		-1.4%	-9%	-3%	-4%	-4%	-5%	carb vs on-hwy
	PA NOx = ful H NOx = only				ection factor	applied									
	-1.3%	4.0%	-5.3%	-4.9%	-5.1%		carb vs 0.3% S								
	1.070	7.0 /0	0.070	7.0 /0	0.170	20.076	04.5 13 0.0 /0 0								

-0.2%

5.6%

-0.7% -2.7% -2.7% -23.2% on-hwy vs 0.3% S

UP No. 9733 Test Results Using CARB Diesel Fuel

UP #9733 Test Date 5-17-99 CARB Diesel Fuel EM-2663-F Run #1/3

SwRI Proj	ect 08-2062	-001							EPA Line-Hau	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	23	47.3	207	312	1,054	1,033	30	DB-2	12.5%	2.9	5.9	25.9	39.0	131.8	129.1	3.8
Low Idle	11	20.1	180	167	370	363	17	Low Idle	19.0%	2.1	3.8	34.2	31.7	70.3	69.0	3.2
Idle	10	24.0	130	167	592	580	17	Idle	19.0%	1.9	4.6	24.7	31.7	112.5	110.2	3.2
N1	195	79.0	105	108	1,831	1,795	38	N1	6.5%	12.7	5.1	6.8	7.0	119.0	116.7	2.5
N2	496	192.0	174	374	5,245	5,148	79	N2	6.5%	32.2	12.5	11.3	24.3	340.9	334.6	5.1
N3	1,037	396.0	370	2,151	15,580	15,275	137	N3	5.2%	53.9	20.6	19.2	111.9	810.2	794.3	7.1
N4	1,553	575.0	383	7,138	21,952	21,534	246	N4	4.4%	68.3	25.3	16.9	314.1	965.9	947.5	10.8
N5	2,221	796.0	577	10,008	29,228	28,657	344	N5	3.8%	84.4	30.2	21.9	380.3	1110.7	1089.0	13.1
N6	2,940	1,012.0	746	10,915	35,554	34,830	348	N6	3.9%	114.7	39.5	29.1	425.7	1386.6	1358.4	13.6
N7	3,660	1,244.0	851	12,396	41,723	40,887	365	N7	3.0%	109.8	37.3	25.5	371.9	1251.7	1226.6	11.0
N8	4,490	1,527.0	1,073	15,216	42,713	41,843	623	N8	16.2%	727.4	247.4	173.8	2465.0	6919.5	6778.5	100.9
	,	,-	,	-, -	, -	,	sum =	TOTAL	100.0%	1210.3	432.2	389.4	4202.6	13219.0	12953.8	174.3
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.357	0.32	3.5	10.9	10.7	0.14
							EPA line-haul	duty cycle maximum	Tier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	e						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		2.057	9.00	13.57	45.83	44.89	1.30	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.827	16.36	15.18	33.64	33.02	1.55	Low Idle	29.9%	3.3	6.0	53.8	49.9	110.6	108.6	5.1
Idle		2.400	13.00	16.70	59.20	57.98	1.70	Idle	29.9%	3.0	7.2	38.9	49.9	177.0	173.4	5.1
N1		0.405	0.54	0.55	9.39	9.20	0.19	N1	12.4%	24.2	9.8	13.0	13.4	227.0	222.6	4.7
N2		0.387	0.35	0.75	10.57	10.38	0.16	N2	12.3%	61.0	23.6	21.4	46.0	645.1	633.2	9.7
N3		0.382	0.36	2.07	15.02	14.73	0.13	N3	5.8%	60.1	23.0	21.5	124.8	903.6	885.9	7.9
N4		0.370	0.25	4.60	14.14	13.87	0.16	N4	3.6%	55.9	20.7	13.8	257.0	790.3	775.2	8.9
N5		0.358	0.26	4.51	13.16	12.90	0.15	N5	3.6%	80.0	28.7	20.8	360.3	1052.2	1031.7	12.4
N6		0.344	0.25	3.71	12.09	11.85	0.12	N6	1.5%	44.1	15.2	11.2	163.7	533.3	522.4	5.2
N7		0.340	0.23	3.39	11.40	11.17	0.10	N7	0.2%	7.3	2.5	1.7	24.8	83.4	81.8	0.7
N8		0.340	0.24	3.39	9.51	9.32	0.14	N8	0.8%	35.9	12.2	8.6	121.7	341.7	334.7	5.0
								TOTAL	100.0%	374.8	148.8	204.6	1211.5	4864.4	4769.5	64.7
							EPA switch du	ty cycle weighted bra	ke-specific emis	sions	0.397	0.55	3.23	12.98	12.72	0.17
							EPA switch cyc	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9733 Test Date 5-18-99 CARB Diesel Fuel EM-2663-F Run #2/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	23	41.4	190	288	1002	991	35	DB-2	12.5%	2.9	5.2	23.8	36.0	125.3	123.9	4.4
Low Idle	10	19.4	169	165	372	368	17	Low Idle	19.0%	1.9	3.7	32.1	31.4	70.7	69.9	3.2
Idle	10	24.6	134	178	609	603	17	Idle	19.0%	1.9	4.7	25.5	33.8	115.7	114.6	3.2
N1	190	79.0	119	106	1,820	1,804	37	N1	6.5%	12.4	5.1	7.7	6.9	118.3	117.3	2.4
N2	498	191.0	187	334	5,320	5,282	68	N2	6.5%	32.4	12.4	12.2	21.7	345.8	343.3	4.4
N3	1,038	398.0	360	1,887	15,424	15,315	128	N3	5.2%	54.0	20.7	18.7	98.1	802.0	796.4	6.7
N4	1,549	574.0	373	6,632	22,192	22,030	215	N4	4.4%	68.2	25.3	16.4	291.8	976.4	969.3	9.5
N5	2,220	791.0	637	8,666	29,536	29,326	273	N5	3.8%	84.4	30.1	24.2	329.3	1122.4	1114.4	10.4
N6	2,939	1,004.0	723	9,126	35,910	35,664	240	N6	3.9%	114.6	39.2	28.2	355.9	1400.5	1390.9	9.4
N7	3,665	1,236.0	880	10,112	43,118	42,811	273	N7	3.0%	110.0	37.1	26.4	303.4	1293.5	1284.3	8.2
N8	4,491	1,538.0	1,125	12,950	43,031	42,689	453	N8	16.2%	727.5	249.2	182.3	2097.9	6971.0	6915.6	73.4
							sum =	TOTAL	100.0%	1210.0	432.5	397.4	3606.2	13341.7	13240.0	135.1
							EPA line-haul du	ity cycle weighted br	ake-specific emi	ssions	0.357	0.33	3.0	11.0	10.9	0.11
							EPA line-haul du	ity cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
	Notch brake	bsfc	HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.800	HC (g/hp-hr) 8.26	(g/hp-hr) 12.52	(g/hp-hr) 43.57	(g/hp-hr) 43.10	(g/hp-hr) 1.52	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.800 1.940	HC (g/hp-hr) 8.26 16.90	(g/hp-hr) 12.52 16.50	(g/hp-hr) 43.57 37.20	(g/hp-hr) 43.10 36.79	(g/hp-hr) 1.52 1.70	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.8	w-HC w-(g/hr) 0.0 50.5	w-CO w-(g/hr) 0.0 49.3	w-(g/hr) 0.0 111.2	w-(g/hr) 0.0 110.0	w-(g/hr) 0.0 5.1
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460	HC (g/hp-hr) 8.26 16.90 13.40	(g/hp-hr) 12.52 16.50 17.80	(g/hp-hr) 43.57 37.20 60.90	(g/hp-hr) 43.10 36.79 60.33	(g/hp-hr) 1.52 1.70 1.70	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4	w-HC w-(g/hr) 0.0 50.5 40.1	w-CO w-(g/hr) 0.0 49.3 53.2	w-(g/hr) 0.0 111.2 182.1	w-(g/hr) 0.0 110.0 180.4	w-(g/hr) 0.0 5.1 5.1
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416	HC (g/hp-hr) 8.26 16.90 13.40 0.63	(g/hp-hr) 12.52 16.50 17.80 0.56	(g/hp-hr) 43.57 37.20 60.90 9.58	(g/hp-hr) 43.10 36.79 60.33 9.50	(g/hp-hr) 1.52 1.70 1.70 0.19	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 23.6	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8	w-HC w-(g/hr) 0.0 50.5 40.1 14.8	w-CO w-(g/hr) 0.0 49.3 53.2 13.1	w-(g/hr) 0.0 111.2 182.1 225.7	w-(g/hr) 0.0 110.0 180.4 223.7	w-(g/hr) 0.0 5.1 5.1 4.6
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 23.6 61.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1	w-(g/hr) 0.0 111.2 182.1 225.7 654.4	w-(g/hr) 0.0 110.0 180.4 223.7 649.7	w-(g/hr) 0.0 5.1 5.1 4.6 8.4
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 23.6 61.3 60.2	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 23.6 61.3 60.2 55.8	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.99% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356 0.342	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24 0.29 0.25	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90 3.11	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30 12.22	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21 12.13	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12 0.08	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5 15.1	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9 10.8	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0 136.9	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3 538.7	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7 535.0	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8 3.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356 0.342 0.337	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24 0.29 0.25 0.24	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90 3.11 2.76	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30 12.22 11.76	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21 12.13 11.68	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12 0.08 0.07	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5 15.1 2.5	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9 10.8 1.8	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0 136.9 20.2	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3 538.7 86.2	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7 535.0 85.6	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8 3.6 0.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356 0.342	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24 0.29 0.25	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90 3.11	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30 12.22	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21 12.13	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12 0.08	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9 44.1 7.3 35.9	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5 15.1 2.5 12.3	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9 10.8 1.8 9.0	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0 136.9 20.2 103.6	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3 538.7 86.2 344.2	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7 535.0 85.6 341.5	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8 3.6 0.5 3.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356 0.342 0.337	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24 0.29 0.25 0.24	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90 3.11 2.76	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30 12.22 11.76	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21 12.13 11.68	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12 0.08 0.07	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5 15.1 2.5	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9 10.8 1.8	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0 136.9 20.2	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3 538.7 86.2	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7 535.0 85.6	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8 3.6 0.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.800 1.940 2.460 0.416 0.384 0.383 0.371 0.356 0.342 0.337	HC (g/hp-hr) 8.26 16.90 13.40 0.63 0.38 0.35 0.24 0.29 0.25 0.24	(g/hp-hr) 12.52 16.50 17.80 0.56 0.67 1.82 4.28 3.90 3.11 2.76	(g/hp-hr) 43.57 37.20 60.90 9.58 10.68 14.86 14.33 13.30 12.22 11.76	(g/hp-hr) 43.10 36.79 60.33 9.50 10.61 14.75 14.22 13.21 12.13 11.68	(g/hp-hr) 1.52 1.70 1.70 0.19 0.14 0.12 0.14 0.12 0.08 0.07 0.10	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.2% 0.8%	0.0 3.0 3.0 23.6 61.3 60.2 55.8 79.9 44.1 7.3 35.9 374.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.4 9.8 23.5 23.1 20.7 28.5 15.1 2.5 12.3	w-HC w-(g/hr) 0.0 50.5 40.1 14.8 23.0 20.9 13.4 22.9 10.8 1.8 9.0	w-CO w-(g/hr) 0.0 49.3 53.2 13.1 41.1 109.4 238.8 312.0 136.9 20.2 103.6	w-(g/hr) 0.0 111.2 182.1 225.7 654.4 894.6 798.9 1063.3 538.7 86.2 344.2	w-(g/hr) 0.0 110.0 180.4 223.7 649.7 888.3 793.1 1055.7 535.0 85.6 341.5	w-(g/hr) 0.0 5.1 5.1 4.6 8.4 7.4 7.7 9.8 3.6 0.5 3.6

UP #9733 Test Date 5-25-99 CARB Diesel Fuel EM-2663-F Run #3/3

UP #9733	Test Date :	0 00 0		= =000												
SwRI Proje	ect 08-2062-	-001							\	Neighted Res	ults					
•									EPA Line-Haul	Ü						
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	22	44.0	208	319	1,079	1,066	34	DB-2	12.5%	2.8	5.5	26.0	39.9	134.9	133.2	4.3
Low Idle	16	15.2	125	123	289	286	12	Low Idle	19.0%	3.0	2.9	23.8	23.4	54.9	54.3	2.3
Idle	10	21.0	118	159	554	548	15	Idle	19.0%	1.9	4.0	22.4	30.2	105.3	104.1	2.9
N1	192	81.0	111	119	1,840	1,822	34	N1	6.5%	12.5	5.3	7.2	7.7	119.6	118.4	2.2
N2	498	189.0	147	330	5,153	5,109	61	N2	6.5%	32.4	12.3	9.6	21.5	334.9	332.1	4.0
N3	1,033	387.0	368	1,900	14,703	14,543	135	N3	5.2%	53.7	20.1	19.1	98.8	764.6	756.2	7.0
N4	1,548	571.0	349	7,428	22,045	21,785	213	N4	4.4%	68.1	25.1	15.4	326.8	970.0	958.5	9.4
N5	2,221	790.0	539	10,011	29,313	29,047	264	N5	3.8%	84.4	30.0	20.5	380.4	1113.9	1103.8	10.0
N6	2,938	1,005.0	722	10,835	36,127	35,766	267	N6	3.9%	114.6	39.2	28.2	422.6	1409.0	1394.9	10.4
N7	3,663	1,240.0	804	14,194	41,478	41,046	325	N7	3.0%	109.9	37.2	24.1	425.8	1244.3	1231.4	9.8
N8	4,499	1,545.0	1,016	14,858	43,196	42,860	538	N8	16.2%	728.8	250.3	164.6	2407.0	6997.8	6943.4	87.2
							sum =	TOTAL	100.0%	1212.1	431.9	360.8	4184.1	13249.1	13130.3	149.3
							EPA line-haul d	uty cycle weighted bra	ake-specific emis	sions	0.356	0.30	3.5	10.9	10.8	0.12
							EPA line-haul de	uty cycle maximum Ti	er 0			1.00	5.0	9.5	9.5	0.60
								EP	A Switch Cycle							
Individual I	Notch brake	-specific em	issions					EP	A Switch Cycle			Weighted R	esults			
	Notch brake	bsfc	HC	со	Corr. NOx		PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.000	HC (g/hp-hr) 9.45	(g/hp-hr) 14.50	(g/hp-hr) 49.05	(g/hp-hr) 48.45	(g/hp-hr) 1.55	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.000 0.950	HC (g/hp-hr) 9.45 7.81	(g/hp-hr) 14.50 7.69	(g/hp-hr) 49.05 18.06	(g/hp-hr) 48.45 17.85	(g/hp-hr) 1.55 0.75	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.8	w-bsfc w-(lb/hp-hr) 0.0 4.5	w-HC w-(g/hr) 0.0 37.4	w-CO w-(g/hr) 0.0 36.8	w-(g/hr) 0.0 86.4	w-(g/hr) 0.0 85.4	w-(g/hr) 0.0 3.6
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100	HC (g/hp-hr) 9.45 7.81 11.80	(g/hp-hr) 14.50 7.69 15.90	(g/hp-hr) 49.05 18.06 55.40	(g/hp-hr) 48.45 17.85 54.80	(g/hp-hr) 1.55 0.75 1.50	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.8 3.0	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3	w-HC w-(g/hr) 0.0 37.4 35.3	w-CO w-(g/hr) 0.0 36.8 47.5	w-(g/hr) 0.0 86.4 165.6	w-(g/hr) 0.0 85.4 163.8	w-(g/hr) 0.0 3.6 4.5
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422	HC (g/hp-hr) 9.45 7.81 11.80 0.58	(g/hp-hr) 14.50 7.69 15.90 0.62	(g/hp-hr) 49.05 18.06 55.40 9.58	(g/hp-hr) 48.45 17.85 54.80 9.49	(g/hp-hr) 1.55 0.75 1.50 0.18	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.8 3.0 23.8	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0	w-HC w-(g/hr) 0.0 37.4 35.3 13.8	w-CO w-(g/hr) 0.0 36.8 47.5 14.8	w-(g/hr) 0.0 86.4 165.6 228.2	w-(g/hr) 0.0 85.4 163.8 225.9	w-(g/hr) 0.0 3.6 4.5 4.2
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.8 3.0 23.8 61.3	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6	w-(g/hr) 0.0 86.4 165.6 228.2 633.8	w-(g/hr) 0.0 85.4 163.8 225.9 628.4	w-(g/hr) 0.0 3.6 4.5 4.2 7.5
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.8 3.0 23.8 61.3 59.9	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.8 3.0 23.8 61.3 59.9 55.7	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369 0.356	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23 0.24	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80 4.51	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24 13.20	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07 13.08	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.8 3.0 23.8 61.3 59.9 55.7 80.0	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6 28.4	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6 19.4	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4 360.4	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6 1055.3	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3 1045.7	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7 9.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369 0.356 0.342	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23 0.24 0.25	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80 4.51 3.69	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24 13.20 12.30	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07 13.08 12.17	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.8 3.0 23.8 61.3 59.9 55.7 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6 28.4 15.1	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6 19.4 10.8	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4 360.4 162.5	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6 1055.3 541.9	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3 1045.7 536.5	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7 9.5 4.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369 0.356 0.342 0.339	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23 0.24 0.25 0.22	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80 4.51 3.69 3.87	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24 13.20 12.30 11.32	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07 13.08 12.17 11.21	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14 0.12 0.09	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 12.4% 12.3% 15.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.8 3.0 23.8 61.3 59.9 55.7 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6 28.4 15.1 2.5	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6 19.4 10.8 1.6	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4 360.4 162.5 28.4	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6 1055.3 541.9 83.0	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3 1045.7 536.5 82.1	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7 9.5 4.0 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369 0.356 0.342	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23 0.24 0.25	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80 4.51 3.69	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24 13.20 12.30	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07 13.08 12.17	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 4.8 3.0 23.8 61.3 59.9 55.7 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6 28.4 15.1	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6 19.4 10.8	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4 360.4 162.5	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6 1055.3 541.9	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3 1045.7 536.5	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7 9.5 4.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.000 0.950 2.100 0.422 0.380 0.375 0.369 0.356 0.342 0.339	HC (g/hp-hr) 9.45 7.81 11.80 0.58 0.30 0.36 0.23 0.24 0.25 0.22	(g/hp-hr) 14.50 7.69 15.90 0.62 0.66 1.84 4.80 4.51 3.69 3.87	(g/hp-hr) 49.05 18.06 55.40 9.58 10.35 14.23 14.24 13.20 12.30 11.32	(g/hp-hr) 48.45 17.85 54.80 9.49 10.26 14.08 14.07 13.08 12.17 11.21	(g/hp-hr) 1.55 0.75 1.50 0.18 0.12 0.13 0.14 0.12 0.09 0.09 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.8 3.0 23.8 61.3 59.9 55.7 80.0 44.1 7.3 36.0 375.8	w-bsfc w-(lb/hp-hr) 0.0 4.5 6.3 10.0 23.2 22.4 20.6 28.4 15.1 2.5 12.4	w-HC w-(g/hr) 0.0 37.4 35.3 13.8 18.1 21.3 12.6 19.4 10.8 1.6 8.1	w-CO w-(g/hr) 0.0 36.8 47.5 14.8 40.6 110.2 267.4 360.4 162.5 28.4 118.9	w-(g/hr) 0.0 86.4 165.6 228.2 633.8 852.8 793.6 1055.3 541.9 83.0 345.6	w-(g/hr) 0.0 85.4 163.8 225.9 628.4 843.5 784.3 1045.7 536.5 82.1 342.9	w-(g/hr) 0.0 3.6 4.5 4.2 7.5 7.8 7.7 9.5 4.0 0.7 4.3

 $\ \, \textbf{UP No. 9733 Test Results Using On-Highway Diesel Fuel} \\$

UP #9733 Test Date 5-18-99 On-Highway Diesel Fuel EM-2677-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resi	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	22	41.3	195	331	1,044	1,034	35	DB-2	12.5%	2.8	5.2	24.4	41.4	130.5	129.2	4.4
Low Idle	16	20.0	164	163	421	417	18	Low Idle	19.0%	3.0	3.8	31.2	31.0	80.0	79.3	3.4
Idle	10	27.0	164	240	708	703	20	Idle	19.0%	1.9	5.1	31.2	45.6	134.5	133.5	3.8
N1	201	83.0	121	103	2,030	2,013	35	N1	6.5%	13.1	5.4	7.9	6.7	132.0	130.8	2.3
N2	497	188.0	152	260	5,324	5,277	62	N2	6.5%	32.3	12.2	9.9	16.9	346.1	343.0	4.0
N3	1,035	392.0	368	1,436	15,182	15,056	137	N3	5.2%	53.8	20.4	19.1	74.7	789.5	782.9	7.1
N4	1,552	578.0	335	7,188	22,606	22,435	179	N4	4.4%	68.3	25.4	14.7	316.3	994.7	987.1	7.9
N5	2,223	797.0	589	10,141	31,127	30,859	260	N5	3.8%	84.5	30.3	22.4	385.4	1182.8	1172.6	9.9
N6	2,942	1,016.0	746	11,050	37,947	37,663	280	N6	3.9%	114.7	39.6	29.1	431.0	1479.9	1468.9	10.9
N7	3,664	1,241.0	858	11,836	42,057	41,739	330	N7	3.0%	109.9	37.2	25.7	355.1	1261.7	1252.2	9.9
N8	4,504	1,554.0	1,059	14,956	42,943	42,660	575	N8	16.2%	729.6	251.7	171.6	2422.9	6956.8	6910.9	93.2
							sum =	TOTAL	100.0%	1213.9	436.4	387.1	4126.7	13488.4	13390.4	156.8
							EPA line-haul duty	cycle weighted br	ake-specific emi	ssions	0.359	0.32	3.4	11.1	11.0	0.13
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake			CO	Corr. NOx	KH-NOx	PM	EF	•	w-BHP	w-bsfc	Weighted R		w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake	bsfc	HC	CO				EF Notch	PA Switch Cycle EPA WF	w-BHP	w-bsfc	w-HC	w-CO			w-PM w-(a/hr)
	Notch brake			CO (g/hp-hr) 15.05	Corr. NOx (g/hp-hr) 47.45	KH-NOx (g/hp-hr) 46.99	PM (g/hp-hr) 1.59		EPA	w-BHP 0.0		Ü		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.877	HC (g/hp-hr) 8.86	(g/hp-hr) 15.05	(g/hp-hr) 47.45	(g/hp-hr) 46.99	(g/hp-hr) 1.59	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.877 1.250	HC (g/hp-hr) 8.86 10.25	(g/hp-hr) 15.05 10.19	(g/hp-hr) 47.45 26.31	(g/hp-hr) 46.99 26.08	(g/hp-hr) 1.59 1.13	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.8	w-bsfc w-(lb/hp-hr) 0.0 6.0	w-HC w-(g/hr) 0.0 49.0	w-CO w-(g/hr) 0.0 48.7	w-(g/hr) 0.0 125.9	w-(g/hr) 0.0 124.7	w-(g/hr) 0.0 5.4
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700	HC (g/hp-hr) 8.86 10.25 16.40	(g/hp-hr) 15.05 10.19 24.00	(g/hp-hr) 47.45 26.31 70.80	(g/hp-hr) 46.99 26.08 70.27	(g/hp-hr) 1.59 1.13 2.00	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 4.8 3.0	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1	w-HC w-(g/hr) 0.0 49.0 49.0	w-CO w-(g/hr) 0.0 48.7 71.8	w-(g/hr) 0.0 125.9 211.7	w-(g/hr) 0.0 124.7 210.1	w-(g/hr) 0.0 5.4 6.0
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413	HC (g/hp-hr) 8.86 10.25 16.40 0.60	(g/hp-hr) 15.05 10.19 24.00 0.51	(g/hp-hr) 47.45 26.31 70.80 10.10	(g/hp-hr) 46.99 26.08 70.27 10.01	(g/hp-hr) 1.59 1.13 2.00 0.17	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 4.8 3.0 24.9	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3	w-HC w-(g/hr) 0.0 49.0 49.0 15.0	w-CO w-(g/hr) 0.0 48.7 71.8 12.8	w-(g/hr) 0.0 125.9 211.7 251.7	w-(g/hr) 0.0 124.7 210.1 249.6	w-(g/hr) 0.0 5.4 6.0 4.3
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.8 3.0 24.9 61.1	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0	w-(g/hr) 0.0 125.9 211.7 251.7 654.9	w-(g/hr) 0.0 124.7 210.1 249.6 649.0	w-(g/hr) 0.0 5.4 6.0 4.3 7.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.99% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1 21.2	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359 0.345	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26 0.25	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56 3.76	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00 12.90	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88 12.80	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12 0.10	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7 15.2	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1 165.8	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6 569.2	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9 564.9	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4 4.2
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359 0.345 0.339	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26 0.25 0.23	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56 3.76 3.23	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00 12.90 11.48	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88 12.80 11.39	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12 0.10 0.09	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7 15.2 2.5	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1 21.2 11.2	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1 165.8 23.7	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6 569.2 84.1	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9 564.9 83.5	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4 4.2 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359 0.345	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26 0.25	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56 3.76	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00 12.90	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88 12.80	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12 0.10	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0 44.1 7.3 36.0	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7 15.2 2.5 12.4	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1 21.2 11.2 1.7 8.5	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1 165.8 23.7 119.6	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6 569.2 84.1 343.5	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9 564.9 83.5 341.3	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4 4.2 0.7 4.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359 0.345 0.339	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26 0.25 0.23	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56 3.76 3.23	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00 12.90 11.48	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88 12.80 11.39	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12 0.10 0.09	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7 15.2 2.5	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1 21.2 11.2	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1 165.8 23.7	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6 569.2 84.1	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9 564.9 83.5	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4 4.2 0.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.877 1.250 2.700 0.413 0.378 0.379 0.372 0.359 0.345 0.339	HC (g/hp-hr) 8.86 10.25 16.40 0.60 0.31 0.36 0.22 0.26 0.25 0.23	(g/hp-hr) 15.05 10.19 24.00 0.51 0.52 1.39 4.63 4.56 3.76 3.23	(g/hp-hr) 47.45 26.31 70.80 10.10 10.71 14.67 14.57 14.00 12.90 11.48	(g/hp-hr) 46.99 26.08 70.27 10.01 10.62 14.55 14.46 13.88 12.80 11.39	(g/hp-hr) 1.59 1.13 2.00 0.17 0.12 0.13 0.12 0.12 0.10 0.09	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.8 3.0 24.9 61.1 60.0 55.9 80.0 44.1 7.3 36.0 377.2	w-bsfc w-(lb/hp-hr) 0.0 6.0 8.1 10.3 23.1 22.7 20.8 28.7 15.2 2.5 12.4	w-HC w-(g/hr) 0.0 49.0 49.0 15.0 18.7 21.3 12.1 21.2 11.2 1.7 8.5	w-CO w-(g/hr) 0.0 48.7 71.8 12.8 32.0 83.3 258.8 365.1 165.8 23.7 119.6	w-(g/hr) 0.0 125.9 211.7 251.7 654.9 880.6 813.8 1120.6 569.2 84.1 343.5	w-(g/hr) 0.0 124.7 210.1 249.6 649.0 873.3 807.6 1110.9 564.9 83.5 341.3	w-(g/hr) 0.0 5.4 6.0 4.3 7.6 7.9 6.4 9.4 4.2 0.7 4.6

UP #9733 Test Date 5-19-99 On-Highway Diesel Fuel EM-2677-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resi	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	23	45.0	233	401	1,115	1,107	41	DB-2	12.5%	2.9	5.6	29.1	50.1	139.4	138.4	5.1
Low Idle	10	22.0	223	210	443	440	23	Low Idle	19.0%	1.9	4.2	42.4	39.9	84.2	83.6	4.4
Idle	10	25.8	156	246	678	672	25	Idle	19.0%	1.9	4.9	29.6	46.7	128.8	127.7	4.8
N1	190	80.0	123	114	2,052	2,035	48	N1	6.5%	12.4	5.2	8.0	7.4	133.4	132.3	3.1
N2	497	188.0	196	303	5,509	5,461	92	N2	6.5%	32.3	12.2	12.7	19.7	358.1	355.0	6.0
N3	1,038	393.0	353	1,465	15,576	15,447	138	N3	5.2%	54.0	20.4	18.4	76.2	810.0	803.2	7.2
N4	1,549	573.0	426	5,625	23,241	23,036	193	N4	4.4%	68.2	25.2	18.7	247.5	1022.6	1013.6	8.5
N5	2,224	795.0	603	9,223	29,858	29,613	260	N5	3.8%	84.5	30.2	22.9	350.5	1134.6	1125.3	9.9
N6	2,941	1,011.0	716	10,240	35,634	35,325	275	N6	3.9%	114.7	39.4	27.9	399.4	1389.7	1377.7	10.7
N7	3,665	1,241.0	903	10,945	44,120	43,697	308	N7	3.0%	110.0	37.2	27.1	328.4	1323.6	1310.9	9.2
N8	4,506	1,547.0	1,040	13,672	43,897	43,518	527	N8	16.2%	730.0	250.6	168.5	2214.9	7111.3	7049.9	85.4
							sum =	TOTAL	100.0%	1212.6	435.3	405.4	3780.6	13635.6	13517.5	154.2
							EPA line-haul dut	y cycle weighted br	ake-specific emis	ssions	0.359	0.33	3.1	11.2	11.1	0.13
							EPA line-haul dut	y cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions									Weighted R	esults			
Individual	Notch brake	-specific em bsfc	issions HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual	Notch brake		HC					Notch	·	w-BHP		w-HC	w-CO			
	Notch brake	bsfc		CO (g/hp-hr) 17.43	Corr. NOx (g/hp-hr) 48.48	KH-NOx (g/hp-hr) 48.15	PM (g/hp-hr) 1.78		EPA	w-BHP 0.0	w-bsfc	Ü		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.957	HC (g/hp-hr) 10.13	(g/hp-hr) 17.43	(g/hp-hr) 48.48	(g/hp-hr) 48.15	(g/hp-hr) 1.78	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.957 2.200	HC (g/hp-hr) 10.13 22.30	(g/hp-hr) 17.43 21.00	(g/hp-hr) 48.48 44.30	(g/hp-hr) 48.15 44.00	(g/hp-hr) 1.78 2.30	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 6.6	w-HC w-(g/hr) 0.0 66.7	w-CO w-(g/hr) 0.0 62.8	w-(g/hr) 0.0 132.5	w-(g/hr) 0.0 131.6	w-(g/hr) 0.0 6.9
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580	HC (g/hp-hr) 10.13 22.30 15.60	(g/hp-hr) 17.43 21.00 24.60	(g/hp-hr) 48.48 44.30 67.80	(g/hp-hr) 48.15 44.00 67.23	(g/hp-hr) 1.78 2.30 2.50	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7	w-HC w-(g/hr) 0.0 66.7 46.6	w-CO w-(g/hr) 0.0 62.8 73.6	w-(g/hr) 0.0 132.5 202.7	w-(g/hr) 0.0 131.6 201.0	w-(g/hr) 0.0 6.9 7.5
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421	HC (g/hp-hr) 10.13 22.30 15.60 0.65	(g/hp-hr) 17.43 21.00 24.60 0.60	(g/hp-hr) 48.48 44.30 67.80 10.80	(g/hp-hr) 48.15 44.00 67.23 10.71	(g/hp-hr) 1.78 2.30 2.50 0.25	Notch DB-2 Low Idle Idle N1	EPA WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 23.6	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9	w-HC w-(g/hr) 0.0 66.7 46.6 15.3	w-CO w-(g/hr) 0.0 62.8 73.6 14.1	w-(g/hr) 0.0 132.5 202.7 254.4	w-(g/hr) 0.0 131.6 201.0 252.3	w-(g/hr) 0.0 6.9 7.5 6.0
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 23.6 61.1	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3	w-(g/hr) 0.0 132.5 202.7 254.4 677.6	w-(g/hr) 0.0 131.6 201.0 252.3 671.7	w-(g/hr) 0.0 6.9 7.5 6.0 11.3
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 23.6 61.1 60.2	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379 0.370	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34 0.28	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41 3.63	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01 15.00	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88 14.87	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 23.6 61.1 60.2 55.8	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8 20.6	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5 15.3	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0 202.5	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4 836.7	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9 829.3	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0 6.9
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379 0.370 0.357	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34 0.28 0.27	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41 3.63 4.15	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01 15.00 13.43	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88 14.87 13.32	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13 0.12 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 23.6 61.1 60.2 55.8 80.1	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8 20.6 28.6	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5 15.3 21.7	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0 202.5 332.0	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4 836.7 1074.9	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9 829.3 1066.1	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0 6.9 9.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379 0.379 0.357	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34 0.28 0.27 0.24	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41 3.63 4.15 3.48	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01 15.00 13.43 12.12	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88 14.87 13.32 12.01	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13 0.12 0.12	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 3.0 23.6 61.1 60.2 55.8 80.1 44.1	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8 20.6 28.6 15.2	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5 15.3 21.7	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0 202.5 332.0 153.6	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4 836.7 1074.9 534.5	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9 829.3 1066.1 529.9	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0 6.9 9.4 4.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379 0.370 0.357 0.344 0.339	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34 0.28 0.27 0.24 0.25	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41 3.63 4.15 3.48 2.99	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01 15.00 13.43 12.12 12.04	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88 14.87 13.32 12.01 11.92	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13 0.12 0.12 0.09 0.08	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.6 61.1 60.2 55.8 80.1 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8 20.6 28.6 15.2 2.5	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5 15.3 21.7 10.7	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0 202.5 332.0 153.6 21.9	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4 836.7 1074.9 534.5 88.2	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9 829.3 1066.1 529.9 87.4	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0 6.9 9.4 4.1 0.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.957 2.200 2.580 0.421 0.378 0.379 0.370 0.357 0.344 0.339	HC (g/hp-hr) 10.13 22.30 15.60 0.65 0.39 0.34 0.28 0.27 0.24 0.25	(g/hp-hr) 17.43 21.00 24.60 0.60 0.61 1.41 3.63 4.15 3.48 2.99	(g/hp-hr) 48.48 44.30 67.80 10.80 11.08 15.01 15.00 13.43 12.12 12.04	(g/hp-hr) 48.15 44.00 67.23 10.71 10.99 14.88 14.87 13.32 12.01 11.92	(g/hp-hr) 1.78 2.30 2.50 0.25 0.19 0.13 0.12 0.12 0.12 0.09 0.08 0.12	Notch DB-2 Low Idle Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 3.0 3.0 23.6 61.1 60.2 55.8 80.1 44.1 7.3 36.0 374.2	w-bsfc w-(lb/hp-hr) 0.0 6.6 7.7 9.9 23.1 22.8 20.6 28.6 15.2 2.5 12.4	w-HC w-(g/hr) 0.0 66.7 46.6 15.3 24.1 20.5 15.3 21.7 10.7 1.8 8.3	w-CO w-(g/hr) 0.0 62.8 73.6 14.1 37.3 85.0 202.5 332.0 153.6 21.9 109.4	w-(g/hr) 0.0 132.5 202.7 254.4 677.6 903.4 836.7 1074.9 534.5 88.2 351.2	w-(g/hr) 0.0 131.6 201.0 252.3 671.7 895.9 829.3 1066.1 529.9 87.4 348.1	w-(g/hr) 0.0 6.9 7.5 6.0 11.3 8.0 6.9 9.4 4.1 0.6 4.2

UP #9733 Test Date 5-24-99 On-Highway Diesel Fuel EM-2677-F Run #3/3

SwRI Proje	ect 08-2062-	-001							\ EPA Line-Haul	Veighted Resu	ults					
	flywheel	fuel rate	HC	СО	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	30	43.0	207	361	1,075	1,060	35	DB-2	12.5%	3.8	5.4	25.9	45.1	134.4	132.6	4.4
Low Idle	10	18.9	190	182	357	352	21	Low Idle	19.0%	1.9	3.6	36.1	34.6	67.8	66.8	4.0
Idle	10	25.2	149	239	664	655	20	Idle	19.0%	1.9	4.8	28.3	45.4	126.2	124.4	3.8
N1	194	80.0	113	115	2,043	2,016	35	N1	6.5%	12.6	5.2	7.3	7.5	132.8	131.0	2.3
N2	497	191.0	159	333	5,578	5,494	70	N2	6.5%	32.3	12.4	10.3	21.6	362.6	357.1	4.6
N3	1,035	399.0	352	1,881	15,871	15,654	150	N3	5.2%	53.8	20.7	18.3	97.8	825.3	814.0	7.8
N4	1,549	577.0	352	7,084	23,263	22,937	210	N4	4.4%	68.2	25.4	15.5	311.7	1023.6	1009.2	9.2
N5	2,222	808.0	516	11,413	29,920	29,493	299	N5	3.8%	84.4	30.7	19.6	433.7	1137.0	1120.7	11.4
N6	2,938	1,024.0	715	13,942	37,278	36,727	340	N6	3.9%	114.6	39.9	27.9	543.7	1453.8	1432.4	13.3
N7	3,664	1,260.0	837	14,085	42,064	41,493	387	N7	3.0%	109.9	37.8	25.1	422.6	1261.9	1244.8	11.6
N8	4,325	1,508.0	938	16,147	42,236	41,667	565	N8	16.2%	700.7	244.3	152.0	2615.8	6842.2	6750.1	91.5
	•	,		,	,	,	sum =	TOTAL	100.0%	1184.0	430.2	366.3	4579.5	13367.5	13183.3	163.8
							EPA line-haul duty	cycle weighted br	ake-specific emis	sions	0.363	0.31	3.9	11.3	11.1	0.14
								cycle maximum T				1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual	Notch brake	-specific em	issions								,	Weighted R	esults			
		bsfc	НС	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		bsfc (lb/hp-hr)	HC (g/hp-hr)	CO (g/hp-hr)	Corr. NOx	KH-NOx		Notch		w-BHP			w-CO w-(a/hr)			w-PM w-(g/hr)
Notch DB-2		bsfc (lb/hp-hr) 1.433	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	PM (g/hp-hr) 1.17	Notch DB-2	WF		w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-(g/hr)
DB-2		(lb/hp-hr) 1.433	(g/hp-hr) 6.90	(g/hp-hr) 12.03	(g/hp-hr) 35.83		(g/hp-hr) 1.17	DB-2	WF 0.0%	0.0	w-(lb/hp-hr) 0.0	w-(g/hr) 0.0	w-(g/hr)	w-(g/hr)	w-(g/hr) 0.0	w-(g/hr) 0.0
		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr) 35.35	(g/hp-hr)		WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr)	w-(g/hr)
DB-2 Low Idle		(lb/hp-hr) 1.433 1.890	(g/hp-hr) 6.90 19.00	(g/hp-hr) 12.03 18.20	(g/hp-hr) 35.83 35.70	(g/hp-hr) 35.35 35.16	(g/hp-hr) 1.17 2.10	DB-2 Low Idle	WF 0.0% 29.9%	0.0 3.0	w-(lb/hp-hr) 0.0 5.7	w-(g/hr) 0.0 56.8	w-(g/hr) 0.0 54.4	w-(g/hr) 0.0 106.7	w-(g/hr) 0.0 105.1	w-(g/hr) 0.0 6.3
DB-2 Low Idle Idle		(lb/hp-hr) 1.433 1.890 2.520	(g/hp-hr) 6.90 19.00 14.90	(g/hp-hr) 12.03 18.20 23.90	(g/hp-hr) 35.83 35.70 66.40	(g/hp-hr) 35.35 35.16 65.50	(g/hp-hr) 1.17 2.10 2.00	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-(lb/hp-hr) 0.0 5.7 7.5	w-(g/hr) 0.0 56.8 44.6	w-(g/hr) 0.0 54.4 71.5	w-(g/hr) 0.0 106.7 198.5	w-(g/hr) 0.0 105.1 195.8	w-(g/hr) 0.0 6.3 6.0
DB-2 Low Idle Idle N1		(lb/hp-hr) 1.433 1.890 2.520 0.412	(g/hp-hr) 6.90 19.00 14.90 0.58	(g/hp-hr) 12.03 18.20 23.90 0.59	(g/hp-hr) 35.83 35.70 66.40 10.53	(g/hp-hr) 35.35 35.16 65.50 10.39	(g/hp-hr) 1.17 2.10 2.00 0.18	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 24.1	w-(lb/hp-hr) 0.0 5.7 7.5 9.9	w-(g/hr) 0.0 56.8 44.6 14.0	w-(g/hr) 0.0 54.4 71.5 14.3	w-(g/hr) 0.0 106.7 198.5 253.3	w-(g/hr) 0.0 105.1 195.8 250.0	w-(g/hr) 0.0 6.3 6.0 4.3
DB-2 Low Idle Idle N1 N2		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 24.1 61.1	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5	w-(g/hr) 0.0 56.8 44.6 14.0 19.6	w-(g/hr) 0.0 54.4 71.5 14.3 41.0	w-(g/hr) 0.0 106.7 198.5 253.3 686.1	w-(g/hr) 0.0 105.1 195.8 250.0 675.8	w-(g/hr) 0.0 6.3 6.0 4.3 8.6
DB-2 Low Idle Idle N1 N2 N3		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.386	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 24.1 61.1 60.0	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7
DB-2 Low Idle Idle N1 N2 N3 N4		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.386 0.372	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34 0.23	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82 4.57	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33 15.02	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12 14.81	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14 0.14	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 24.1 61.1 60.0 55.8	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1 20.8	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4 12.7	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1 255.0	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5 837.5	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9 825.7	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7 7.6
DB-2 Low Idle Idle N1 N2 N3 N4 N5		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.386 0.372 0.364	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34 0.23 0.23	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82 4.57 5.14	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33 15.02 13.47	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12 14.81 13.27	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14 0.14	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 24.1 61.1 60.0 55.8 80.0	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1 20.8 29.1	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4 12.7 18.6	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1 255.0 410.9	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5 837.5 1077.1	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9 825.7 1061.8	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7 7.6 10.8
DB-2 Low Idle Idle N1 N2 N3 N4 N5		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.386 0.372 0.364 0.349	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34 0.23 0.23	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82 4.57 5.14 4.75	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33 15.02 13.47 12.69	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12 14.81 13.27 12.50	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14 0.14 0.13 0.12	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 3.0 24.1 61.1 60.0 55.8 80.0 44.1	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1 20.8 29.1 15.4	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4 12.7 18.6 10.7	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1 255.0 410.9 209.1	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5 837.5 1077.1 559.2	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9 825.7 1061.8 550.9	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7 7.6 10.8 5.1
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.372 0.364 0.349	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34 0.23 0.23 0.24 0.23	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82 4.57 5.14 4.75 3.84	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33 15.02 13.47 12.69 11.48	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12 14.81 13.27 12.50 11.32	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14 0.13 0.12 0.11	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 24.1 61.1 60.0 55.8 80.0 44.1 7.3	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1 20.8 29.1 15.4 2.5	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4 12.7 18.6 10.7	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1 255.0 410.9 209.1 28.2	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5 837.5 1077.1 559.2 84.1	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9 825.7 1061.8 550.9 83.0	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7 7.6 10.8 5.1 0.8
DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7		(lb/hp-hr) 1.433 1.890 2.520 0.412 0.384 0.372 0.364 0.349	(g/hp-hr) 6.90 19.00 14.90 0.58 0.32 0.34 0.23 0.23 0.24 0.23	(g/hp-hr) 12.03 18.20 23.90 0.59 0.67 1.82 4.57 5.14 4.75 3.84	(g/hp-hr) 35.83 35.70 66.40 10.53 11.22 15.33 15.02 13.47 12.69 11.48	(g/hp-hr) 35.35 35.16 65.50 10.39 11.05 15.12 14.81 13.27 12.50 11.32	(g/hp-hr) 1.17 2.10 2.00 0.18 0.14 0.14 0.13 0.12 0.11 0.13	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.0 3.0 24.1 61.1 60.0 55.8 80.0 44.1 7.3 34.6 373.0	w-(lb/hp-hr) 0.0 5.7 7.5 9.9 23.5 23.1 20.8 29.1 15.4 2.5 12.1	w-(g/hr) 0.0 56.8 44.6 14.0 19.6 20.4 12.7 18.6 10.7 7.5	w-(g/hr) 0.0 54.4 71.5 14.3 41.0 109.1 255.0 410.9 209.1 28.2 129.2	w-(g/hr) 0.0 106.7 198.5 253.3 686.1 920.5 837.5 1077.1 559.2 84.1 337.9	w-(g/hr) 0.0 105.1 195.8 250.0 675.8 907.9 825.7 1061.8 550.9 83.0 333.3	w-(g/hr) 0.0 6.3 6.0 4.3 8.6 8.7 7.6 10.8 5.1 0.8 4.5

UP No. 9733 Test Results Using High-Sulfur Diesel Fuel

UP #9733 Test Date 5-20-99 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #1/3

SwRI Proje	ect 08-2062	-001	Ü						EPA Line-Hau	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	30	41.3	186	357	1,060	1,049	39	DB-2	12.5%	3.8	5.2	23.3	44.6	132.5	131.2	4.9
Low Idle	10	19.0	175	198	340	337	31	Low Idle	19.0%	1.9	3.6	33.3	37.6	64.6	64.0	5.9
Idle	10	24.0	137	239	643	637	27	Idle	19.0%	1.9	4.6	26.0	45.4	122.2	121.1	5.1
N1	194	81.0	127	120	2,244	2,229	60	N1	6.5%	12.6	5.3	8.3	7.8	145.9	144.9	3.9
N2	498	190.0	174	294	5,877	5,834	125	N2	6.5%	32.4	12.4	11.3	19.1	382.0	379.2	8.1
N3	1,037	398.0	355	1,623	15,882	15,773	243	N3	5.2%	53.9	20.7	18.5	84.4	825.9	820.2	12.6
N4	1,552	575.0	377	5,933	23,347	23,174	343	N4	4.4%	68.3	25.3	16.6	261.1	1027.3	1019.7	15.1
N5	2,220	803.0	526	10,014	31,526	31,309	407	N5	3.8%	84.4	30.5	20.0	380.5	1198.0	1189.7	15.5
N6	2,940	1,021.0	703	13,067	38,338	38,045	445	N6	3.9%	114.7	39.8	27.4	509.6	1495.2	1483.8	17.4
N7	3,663	1,249.0	796	13,034	42,486	42,136	565	N7	3.0%	109.9	37.5	23.9	391.0	1274.6	1264.1	17.0
N8	4,493	1,555.0	961	15,247	45,379	45,043	906	N8	16.2%	727.9	251.9	155.7	2470.0	7351.4	7297.0	146.8
	,	,		ŕ	,	,	sum =	TOTAL	100.0%	1211.5	436.7	364.1	4251.2	14019.4	13914.8	252.2
							EPA line-haul	duty cycle weighted b	rake-specific em	nissions	0.360	0.30	3.5	11.6	11.5	0.21
							EPA line-haul	duty cycle maximum	Γier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.377	6.20	11.90	35.33	34.98	1.30	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.900	17.50	19.80	34.00	33.70	3.10	Low Idle	29.9%	3.0	5.7	52.3	59.2	101.7	100.8	9.3
Idle		2.400	13.70	23.90	64.30	63.75	2.70	Idle	29.9%	3.0	7.2	41.0	71.5	192.3	190.6	8.1
N1		0.418	0.65	0.62	11.57	11.49	0.31	N1	12.4%	24.1	10.0	15.7	14.9	278.3	276.4	7.4
N2		0.382	0.35	0.59	11.80	11.71	0.25	N2	12.3%	61.3	23.4	21.4	36.2	722.9	717.6	15.4
N3		0.384	0.34	1.57	15.32	15.21	0.23	N3	5.8%	60.1	23.1	20.6	94.1	921.2	914.8	14.1
N4		0.370	0.24	3.82	15.04	14.93	0.22	N4	3.6%	55.9	20.7	13.6	213.6	840.5	834.3	12.3
N5		0.362	0.24	4.51	14.20	14.10	0.18	N5	3.6%	79.9	28.9	18.9	360.5	1134.9	1127.1	14.7
N6		0.347	0.24	4.44	13.04	12.94	0.15	N6	1.5%	44.1	15.3	10.5	196.0	575.1	570.7	6.7
N7		0.341	0.22	3.56	11.60	11.50	0.15	N7	0.2%	7.3	2.5	1.6	26.1	85.0	84.3	1.1
N8		0.346	0.21	3.39	10.10	10.03	0.20	N8	0.8%	35.9	12.4	7.7	122.0	363.0	360.3	7.2
								TOTAL	100.0%	374.6	149.2	203.4	1194.0	5214.7	5176.8	96.3
							EPA switch du	ty cycle weighted bra	ke-specific emis	sions	0.398	0.54	3.19	13.92	13.82	0.26
							EPA switch cy	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9733 Test Date 5-21-99 Nonroad High-Sulfur Diesel Fuel EM-2664-F Run #2/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Resu	ults					
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	22	42.3	181	366	1,092	1,072	37	DB-2	12.5%	2.8	5.3	22.6	45.8	136.5	134.0	4.6
Low Idle	10	16.8	148	176	303	297	23	Low Idle	19.0%	1.9	3.2	28.1	33.4	57.6	56.5	4.4
Idle	10	26.4	159	270	714	701	29	Idle	19.0%	1.9	5.0	30.2	51.3	135.7	133.2	5.5
N1	193	82.0	119	115	2,275	2,241	51	N1	6.5%	12.5	5.3	7.7	7.5	147.9	145.7	3.3
N2	499	190.0	163	305	5,921	5,831	108	N2	6.5%	32.4	12.4	10.6	19.8	384.9	379.0	7.0
N3	1,034	396.0	336	997	16,536	16,293	270	N3	5.2%	53.8	20.6	17.5	51.8	859.9	847.3	14.0
N4	1,551	577.0	371	5,292	23,736	23,413	357	N4	4.4%	68.2	25.4	16.3	232.8	1044.4	1030.2	15.7
N5	2,223	805.0	535	9,968	31,407	31,003	459	N5	3.8%	84.5	30.6	20.3	378.8	1193.5	1178.1	17.4
N6	2,939	1,021.0	669	12,724	37,102	36,610	500	N6	3.9%	114.6	39.8	26.1	496.2	1447.0	1427.8	19.5
N7	3,664	1,251.0	831	13,802	45,783	45,172	567	N7	3.0%	109.9	37.5	24.9	414.1	1373.5	1355.2	17.0
N8	4,496	1,559.0	931	15,592	45,794	45,206	847	N8	16.2%	728.4	252.6	150.8	2525.9	7418.6	7323.4	137.2
							sum =	TOTAL	100.0%	1210.9	437.7	355.3	4257.5	14199.3	14010.3	245.8
							EPA line-haul duty	cycle weighted bra	ake-specific emis	ssions	0.361	0.29	3.5	11.7	11.6	0.20
							EPA line-haul duty	cycle maximum T	er 0			1.00	5.0	9.5	9.5	0.60
								EF	A Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	EF	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
Individual I	Notch brake		HC					EF Notch	ĺ	w-BHP		w-HC	w-CO			
	Notch brake	bsfc		CO (g/hp-hr) 16.64	Corr. NOx (g/hp-hr) 49.64	KH-NOx (g/hp-hr) 48.74	PM (g/hp-hr) 1.68		EPA	w-BHP 0.0	w-bsfc	•		w-NOx w-(g/hr) 0.0	w-KH-NOx w-(g/hr) 0.0	w-PM w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	EPA WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.923	HC (g/hp-hr) 8.23	(g/hp-hr) 16.64	(g/hp-hr) 49.64	(g/hp-hr) 48.74	(g/hp-hr) 1.68	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.923 1.680	HC (g/hp-hr) 8.23 14.80	(g/hp-hr) 16.64 17.60	(g/hp-hr) 49.64 30.30	(g/hp-hr) 48.74 29.72	(g/hp-hr) 1.68 2.30	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.0	w-HC w-(g/hr) 0.0 44.3	w-CO w-(g/hr) 0.0 52.6	w-(g/hr) 0.0 90.6	w-(g/hr) 0.0 88.9	w-(g/hr) 0.0 6.9
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640	HC (g/hp-hr) 8.23 14.80 15.90	(g/hp-hr) 16.64 17.60 27.00	(g/hp-hr) 49.64 30.30 71.40	(g/hp-hr) 48.74 29.72 70.10	(g/hp-hr) 1.68 2.30 2.90	Notch DB-2 Low Idle Idle	EPA WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9	w-HC w-(g/hr) 0.0 44.3 47.5	w-CO w-(g/hr) 0.0 52.6 80.7	w-(g/hr) 0.0 90.6 213.5	w-(g/hr) 0.0 88.9 209.6	w-(g/hr) 0.0 6.9 8.7
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 23.9 61.4 60.0	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8	w-(g/hr) 0.0 90.6 213.5 282.1 728.3 959.1	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 23.9 61.4	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5	w-(g/hr) 0.0 90.6 213.5 282.1 728.3	w-(g/hr) 0.0 88.9 209.6 277.9 717.2	w-(g/hr) 0.0 6.9 8.7 6.3 13.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8	w-(g/hr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362 0.347	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24 0.23	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48 4.33	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13 12.62	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95 12.46	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21 0.17	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0 15.3	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3 10.0	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8 190.9	w-(g/hr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7 556.5	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1 549.2	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5 7.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362 0.347 0.341	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24 0.23 0.23	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48 4.33 3.77	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13 12.62 12.50	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95 12.46 12.33	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21 0.17 0.15	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0 15.3 2.5	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3 10.0 1.7	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8 190.9 27.6	w-(g/nr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7 556.5 91.6	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1 549.2 90.3	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5 7.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362 0.347	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24 0.23	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48 4.33	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13 12.62	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95 12.46	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21 0.17	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2% 0.8%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0 44.1 7.3 36.0	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0 15.3 2.5 12.5	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3 10.0 1.7 7.4	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8 190.9 27.6 124.7	w-(g/hr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7 556.5 91.6 366.4	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1 549.2 90.3 361.6	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5 7.5 1.1 6.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362 0.347 0.341	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24 0.23 0.23	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48 4.33 3.77	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13 12.62 12.50	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95 12.46 12.33	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21 0.17 0.15	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0 15.3 2.5	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3 10.0 1.7	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8 190.9 27.6	w-(g/nr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7 556.5 91.6	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1 549.2 90.3	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5 7.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.923 1.680 2.640 0.425 0.381 0.383 0.372 0.362 0.347 0.341	HC (g/hp-hr) 8.23 14.80 15.90 0.62 0.33 0.32 0.24 0.24 0.23 0.23	(g/hp-hr) 16.64 17.60 27.00 0.60 0.61 0.96 3.41 4.48 4.33 3.77	(g/hp-hr) 49.64 30.30 71.40 11.79 11.87 15.99 15.30 14.13 12.62 12.50	(g/hp-hr) 48.74 29.72 70.10 11.61 11.69 15.76 15.10 13.95 12.46 12.33	(g/hp-hr) 1.68 2.30 2.90 0.26 0.22 0.26 0.23 0.21 0.17 0.15	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 3.0 3.0 23.9 61.4 60.0 55.8 80.0 44.1 7.3 36.0 374.5	w-bsfc w-(lb/hp-hr) 0.0 5.0 7.9 10.2 23.4 23.0 20.8 29.0 15.3 2.5 12.5	w-HC w-(g/hr) 0.0 44.3 47.5 14.8 20.0 19.5 13.4 19.3 10.0 1.7 7.4	w-CO w-(g/hr) 0.0 52.6 80.7 14.3 37.5 57.8 190.5 358.8 190.9 27.6 124.7	w-(g/hr) 0.0 90.6 213.5 282.1 728.3 959.1 854.5 1130.7 556.5 91.6 366.4	w-(g/hr) 0.0 88.9 209.6 277.9 717.2 945.0 842.9 1116.1 549.2 90.3 361.6	w-(g/hr) 0.0 6.9 8.7 6.3 13.3 15.7 12.9 16.5 7.5 1.1 6.8

UP #9733 Test Date 5-21-99 Nonroad High Sulfur Diesel Fuel EM-2664-F Run #3/3

SwRI Proje	ect 08-2062-	-001							V EPA Line-Haul	Veighted Res	ults					
	flywheel	fuel rate	HC	CO	Corr. NOx	KH-NOx	PM		WF	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch	HP	(lb/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	(g/hr)	Notch			w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2	22	43.0	181	372	1,095	1,084	32	DB-2	12.5%	2.8	5.4	22.6	46.5	136.9	135.5	4.0
Low Idle	16	19.5	180	194	348	344	25	Low Idle	19.0%	3.0	3.7	34.2	36.9	66.1	65.3	4.8
Idle	10	23.4	142	237	632	625	23	Idle	19.0%	1.9	4.4	27.0	45.0	120.1	118.8	4.4
N1	194	83.0	113	124	2,259	2,240	41	N1	6.5%	12.6	5.4	7.3	8.1	146.8	145.6	2.7
N2	498	191.0	164	319	5,798	5,746	93	N2	6.5%	32.4	12.4	10.7	20.7	376.9	373.5	6.0
N3	1,037	397.0	335	1,772	16,086	15,950	246	N3	5.2%	53.9	20.6	17.4	92.1	836.5	829.4	12.8
N4	1,547	573.0	333	5,997	23,497	23,281	298	N4	4.4%	68.1	25.2	14.7	263.9	1033.9	1024.3	13.1
N5	2,221	807.0	502	10,568	30,755	30,484	428	N5	3.8%	84.4	30.7	19.1	401.6	1168.7	1158.4	16.3
N6	2,938	1,021.0	704	13,007	36,892	36,590	448	N6	3.9%	114.6	39.8	27.5	507.3	1438.8	1427.0	17.5
N7	3,663	1,250.0	797	12,858	43,678	43,308	528	N7	3.0%	109.9	37.5	23.9	385.7	1310.3	1299.2	15.8
N8	4,495	1,557.0	1,035	15,693	46,297	45,951	888	N8	16.2%	728.2	252.2	167.7	2542.3	7500.1	7444.1	143.9
							sum =	TOTAL	100.0%	1211.7	437.4	372.0	4350.1	14135.1	14021.2	241.2
							EPA line-haul duty	cycle weighted bra	ake-specific emiss	sions	0.361	0.31	3.6	11.7	11.6	0.20
							EPA line-haul duty	cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions					EF	PA Switch Cycle			Weighted R	esults			
Individual I	Notch brake	-specific em	issions HC	CO	Corr. NOx	KH-NOx	PM	EF	PA Switch Cycle EPA	w-BHP	w-bsfc	Weighted R	esults w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	EF Notch	•	w-BHP		Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	НС						EPA	w-BHP 0.0	w-bsfc	w-HC	w-CO			
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr) 1.45 1.56	Notch	EPA WF 0.0% 29.9%		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr) 0.0 102.8	w-(g/hr) 0.0 7.5
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 1.955	HC (g/hp-hr) 8.23	(g/hp-hr) 16.91	(g/hp-hr) 49.77	(g/hp-hr) 49.26	(g/hp-hr) 1.45	Notch DB-2	EPA WF 0.0%	0.0	w-bsfc w-(lb/hp-hr) 0.0	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0	w-(g/hr) 0.0
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 1.955 1.219	HC (g/hp-hr) 8.23 11.25	(g/hp-hr) 16.91 12.13	(g/hp-hr) 49.77 21.75	(g/hp-hr) 49.26 21.50	(g/hp-hr) 1.45 1.56	Notch DB-2 Low Idle	EPA WF 0.0% 29.9%	0.0 4.8	w-bsfc w-(lb/hp-hr) 0.0 5.8	w-HC w-(g/hr) 0.0 53.8	w-CO w-(g/hr) 0.0 58.0	w-(g/hr) 0.0 104.1	w-(g/hr) 0.0 102.8	w-(g/hr) 0.0 7.5 6.9 5.1
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64	(g/hp-hr) 49.77 21.75 63.20	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19	Notch DB-2 Low Idle Idle N1 N2	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 4.8 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2	w-(g/hr) 0.0 104.1 189.0 280.1 713.2	w-(g/hr) 0.0 102.8 186.9 277.7 706.8	w-(g/hr) 0.0 7.5 6.9 5.1 11.4
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71	(g/hp-hr) 49.77 21.75 63.20 11.64	(g/hp-hr) 49.26 21.50 62.50 11.54	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24	Notch DB-2 Low Idle Idle N1 N2 N3	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 4.8 3.0 24.1	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3	w-HC w-(g/hr) 0.0 53.8 42.5 14.0	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.38 15.05	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 4.8 3.0 24.1 61.3 60.1 55.7	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.38 15.05 13.73	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363 0.348	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23 0.24	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76 4.43	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85 12.56	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.38 15.05 13.73 12.45	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	EPA WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1 15.3	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1 10.6	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4 195.1	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2 553.4	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4 548.9	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4 6.7
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363 0.348 0.341	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23 0.24 0.22	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76 4.43 3.51	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85 12.56 11.92	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.05 13.73 12.45 11.82	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19 0.15 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1 15.3 2.5	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1 10.6 1.6	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4 195.1 25.7	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2 553.4 87.4	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4 548.9 86.6	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4 6.7 1.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363 0.348	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23 0.24	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76 4.43	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85 12.56	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.38 15.05 13.73 12.45	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0 44.1 7.3 36.0	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1 15.3 2.5 12.5	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1 10.6 1.6 8.3	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4 195.1 25.7 125.5	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2 553.4 87.4 370.4	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4 548.9 86.6 367.6	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4 6.7 1.1 7.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363 0.348 0.341	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23 0.24 0.22	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76 4.43 3.51	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85 12.56 11.92	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.05 13.73 12.45 11.82	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19 0.15 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1 15.3 2.5	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1 10.6 1.6	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4 195.1 25.7	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2 553.4 87.4	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4 548.9 86.6	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4 6.7 1.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 1.955 1.219 2.340 0.428 0.384 0.383 0.370 0.363 0.348 0.341	HC (g/hp-hr) 8.23 11.25 14.20 0.58 0.33 0.32 0.22 0.23 0.24 0.22	(g/hp-hr) 16.91 12.13 23.70 0.64 0.64 1.71 3.88 4.76 4.43 3.51	(g/hp-hr) 49.77 21.75 63.20 11.64 11.64 15.51 15.19 13.85 12.56 11.92	(g/hp-hr) 49.26 21.50 62.50 11.54 11.54 15.05 13.73 12.45 11.82	(g/hp-hr) 1.45 1.56 2.30 0.21 0.19 0.24 0.19 0.19 0.15 0.14	Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7 N8 TOTAL	EPA WF 0.0% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 0.2% 0.8% 100.0%	0.0 4.8 3.0 24.1 61.3 60.1 55.7 80.0 44.1 7.3 36.0 376.2	w-bsfc w-(lb/hp-hr) 0.0 5.8 7.0 10.3 23.5 23.0 20.6 29.1 15.3 2.5 12.5	w-HC w-(g/hr) 0.0 53.8 42.5 14.0 20.2 19.4 12.0 18.1 10.6 1.6 8.3	w-CO w-(g/hr) 0.0 58.0 70.9 15.4 39.2 102.8 215.9 380.4 195.1 25.7 125.5	w-(g/hr) 0.0 104.1 189.0 280.1 713.2 933.0 845.9 1107.2 553.4 87.4 370.4	w-(g/hr) 0.0 102.8 186.9 277.7 706.8 925.1 838.1 1097.4 548.9 86.6 367.6	w-(g/hr) 0.0 7.5 6.9 5.1 11.4 14.3 10.7 15.4 6.7 1.1 7.1

UP No. 9733 Test Results Using 0.3% Sulfur Diesel Fuel

UP #9733 Test Date 5-19-99 0.3% Diesel Fuel EM-2708-F Run #1/3

SwRI Proje	ect 08-2062	-001							EPA Line-Haul	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	22	39.0	185	348	975	965	45	DB-2	12.5%	2.8	4.9	23.1	43.5	121.9	120.6	5.6
Low Idle	10	19.0	220	202	304	301	30	Low Idle	19.0%	1.9	3.6	41.8	38.4	57.8	57.2	5.7
Idle	10	24.0	140	223	603	598	23	Idle	19.0%	1.9	4.6	26.6	42.4	114.6	113.5	4.4
N1	194	82.0	129	116	2,267	2,248	46	N1	6.5%	12.6	5.3	8.4	7.5	147.4	146.1	3.0
N2	497	191.0	182	307	5,833	5,791	87	N2	6.5%	32.3	12.4	11.8	20.0	379.1	376.4	5.7
N3	1,030	396.0	429	1,628	16,185	16,073	192	N3	5.2%	53.6	20.6	22.3	84.7	841.6	835.8	10.0
N4	1,550	576.0	405	5,999	24,196	24,046	218	N4	4.4%	68.2	25.3	17.8	264.0	1064.6	1058.0	9.6
N5	2,224	801.0	552	9,751	30,977	30,761	291	N5	3.8%	84.5	30.4	21.0	370.5	1177.1	1168.9	11.1
N6	2,938	1,018.0	739	11,353	37,197	37,040	347	N6	3.9%	114.6	39.7	28.8	442.8	1450.7	1444.6	13.5
N7	3,663	1,250.0	820	12,459	42,636	42,380	404	N7	3.0%	109.9	37.5	24.6	373.8	1279.1	1271.4	12.1
N8	4,500	1,558.0	947	15,572	44,740	44,465	725	N8	16.2%	729.0	252.4	153.4	2522.7	7247.9	7203.4	117.5
							sum =	TOTAL	100.0%	1211.2	436.8	379.7	4210.1	13881.7	13796.0	198.1
							EPA line-haul	duty cycle weighted br	ake-specific em	nissions	0.361	0.31	3.5	11.5	11.4	0.16
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								El	PA Switch Cycle	e						
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	CO	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.773	8.41	15.82	44.32	43.87	2.05	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.900	22.00	20.20	30.40	30.13	3.00	Low Idle	29.9%	3.0	5.7	65.8	60.4	90.9	90.1	9.0
Idle		2.400	14.00	22.30	60.30	59.75	2.30	Idle	29.9%	3.0	7.2	41.9	66.7	180.3	178.7	6.9
N1		0.423	0.66	0.60	11.69	11.59	0.24	N1	12.4%	24.1	10.2	16.0	14.4	281.1	278.7	5.7
N2		0.384	0.37	0.62	11.74	11.65	0.18	N2	12.3%	61.1	23.5	22.4	37.8	717.5	712.3	10.7
N3		0.384	0.42	1.58	15.71	15.61	0.19	N3	5.8%	59.7	23.0	24.9	94.4	938.7	932.3	11.1
N4		0.372	0.26	3.87	15.61	15.51	0.14	N4	3.6%	55.8	20.7	14.6	216.0	871.1	865.7	7.8
N5		0.360	0.25	4.38	13.93	13.83	0.13	N5	3.6%	80.1	28.8	19.9	351.0	1115.2	1107.4	10.5
N6		0.346	0.25	3.86	12.66	12.61	0.12	N6	1.5%	44.1	15.3	11.1	170.3	558.0	555.6	5.2
N7		0.341	0.22	3.40	11.64	11.57	0.11	N7	0.2%	7.3	2.5	1.6	24.9	85.3	84.8	0.8
N8		0.346	0.21	3.46	9.94	9.88	0.16	N8	0.8%	36.0	12.5	7.6	124.6	357.9	355.7	5.8
								TOTAL	100.0%	374.2	149.3	225.7	1160.4	5195.9	5161.1	73.5
								ty cycle weighted brak	e-specific emis	sions	0.399	0.60	3.10	13.89	13.79	0.20
							EPA switch cyc	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9733 Test Date 5-20-99 0.3% Diesel Fuel EM-2708-F Run #2/3

SwRI Proje	ect 08-2062	-001	,						EDA Line Herr	Weighted Resu	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	EPA Line-Hau WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	22	41.3	182	376	1,024	1,009	35	DB-2	12.5%	2.8	5.2	22.8	47.0	128.0	126.1	4.4
Low Idle	10	19.5	206	208	335	330	28	Low Idle	19.0%	1.9	3.7	39.1	39.5	63.7	62.7	5.3
Idle	10	24.0	152	247	637	627	23	Idle	19.0%	1.9	4.6	28.9	46.9	121.0	119.1	4.4
N1	194	80.0	113	109	2,166	2,135	38	N1	6.5%	12.6	5.2	7.3	7.1	140.8	138.8	2.5
N2	499	191.0	170	291	5,821	5,736	89	N2	6.5%	32.4	12.4	11.1	18.9	378.4	372.9	5.8
N3	1,032	398.0	354	1,437	16,361	16,140	202	N3	5.2%	53.7	20.7	18.4	74.7	850.8	839.3	10.5
N4	1,548	574.0	395	4,935	24,093	23,822	264	N4	4.4%	68.1	25.3	17.4	217.1	1060.1	1048.2	11.6
N5	2,222	803.0	514	9,282	31,869	31,504	344	N5	3.8%	84.4	30.5	19.5	352.7	1211.0	1197.2	13.1
N6	2,939	1,020.0	679	11,669	36,589	36,148	405	N6	3.9%	114.6	39.8	26.5	455.1	1427.0	1409.8	15.8
N7	3,662	1,251.0	799	12,285	42,567	42,075	448	N7	3.0%	109.9	37.5	24.0	368.6	1277.0	1262.3	13.4
N8	4,496	1,564.0	964	15,485	45,669	45,195	748	N8	16.2%	728.4	253.4	156.2	2508.6	7398.4	7321.6	121.2
							sum =	TOTAL	100.0%	1210.6	438.2	371.1	4136.2	14056.1	13897.9	207.9
							EPA line-haul	duty cycle weighted bi	rake-specific en	nissions	0.362	0.31	3.4	11.6	11.5	0.17
							EPA line-haul	duty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								E	PA Switch Cycle	Э						
Individual	Notch brake	-specific em	issions									Weighted R	esults			
		bsfc	HC	co	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	w-HC	w-CO	w-NOx	w-KH-NOx	w-PM
Notch		(lb/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	Notch	WF		w-(lb/hp-hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
DB-2		1.877	8.27	17.09	46.55	45.87	1.59	DB-2	0.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Low Idle		1.950	20.60	20.80	33.50	33.01	2.80	Low Idle	29.9%	3.0	5.8	61.6	62.2	100.2	98.7	8.4
Idle		2.400	15.20	24.70	63.70	62.69	2.30	Idle	29.9%	3.0	7.2	45.4	73.9	190.5	187.4	6.9
N1		0.412	0.58	0.56	11.16	11.01	0.20	N1	12.4%	24.1	9.9	14.0	13.5	268.6	264.7	4.7
N2		0.383	0.34	0.58	11.67	11.50	0.18	N2	12.3%	61.4	23.5	20.9	35.8	716.0	705.6	10.9
N3		0.386	0.34	1.39	15.85	15.64	0.20	N3	5.8%	59.9	23.1	20.5	83.3	948.9	936.1	11.7
N4		0.371	0.26	3.19	15.56	15.39	0.17	N4	3.6%	55.7	20.7	14.2	177.7	867.3	857.6	9.5
N5		0.361	0.23	4.18	14.34	14.18	0.15	N5	3.6%	80.0	28.9	18.5	334.2	1147.3	1134.2	12.4
N6		0.347	0.23	3.97	12.45	12.30	0.14	N6	1.5%	44.1	15.3	10.2	175.0	548.8	542.2	6.1
N7		0.342	0.22	3.35	11.62	11.49	0.12	N7	0.2%	7.3	2.5	1.6	24.6	85.1	84.2	0.9
N8		0.348	0.21	3.44	10.16	10.05	0.17	N8	0.8%	36.0	12.5	7.7	123.9	365.4	361.6	6.0
								TOTAL	100.0%	374.4	149.4	214.7	1104.0	5238.1	5172.2	77.5
							EPA switch du	ty cycle weighted brak	e-specific emis	sions	0.399	0.57	2.95	13.99	13.82	0.21
							EPA switch cyc	cle maximum Tier 0				2.10	8.0	14.0	14.0	0.72

UP #9733 Test Date 5-24-99 0.3% Diesel Fuel EM-2708-F Run #3/3

SwRI Proje	ect 08-2062-	-001							EPA Line-Haul	Weighted Res	ults					
Notch	flywheel HP	fuel rate (lb/hr)	HC (g/hr)	CO (g/hr)	Corr. NOx (g/hr)	KH-NOx (g/hr)	PM (g/hr)	Notch	WF	w-BHP	w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
DB-2	22	44.0	197	388	1,108	1,092	36	DB-2	12.5%	2.8	5.5	24.6	48.5	138.5	136.5	4.5
Low Idle	10	17.6	187	175	304	300	24	Low Idle	19.0%	1.9	3.3	35.5	33.3	57.8	57.1	4.6
Idle	10	24.6	154	233	657	647	24	Idle	19.0%	1.9	4.7	29.3	44.3	124.8	122.9	4.6
N1	193	83.0	114	110	2,249	2,219	40	N1	6.5%	12.5	5.4	7.4	7.2	146.2	144.2	2.6
N2	500	192.0	158	295	5,923	5,841	88	N2	6.5%	32.5	12.5	10.3	19.2	385.0	379.7	5.7
N3	1,031	400.0	310	1,562	15,817	15,603	183	N3	5.2%	53.6	20.8	16.1	81.2	822.5	811.3	9.5
N4	1,549	573.0	347	5,502	23,755	23,412	301	N4	4.4%	68.2	25.2	15.3	242.1	1045.2	1030.1	13.2
N5	2,222	810.0	492	11,705	30,632	30,209	403	N5	3.8%	84.4	30.8	18.7	444.8	1164.0	1147.9	15.3
N6	2,939	1,029.0	666	14,347	36,139	35,653	475	N6	3.9%	114.6	40.1	26.0	559.5	1409.4	1390.5	18.5
N7	3,665	1,253.0	834	12,955	43,286	42,763	479	N7	3.0%	110.0	37.6	25.0	388.7	1298.6	1282.9	14.4
N8	4,501	1,559.0	971	15,166	45,384	44,785	761	N8	16.2%	729.2	252.6	157.3	2456.9	7352.2	7255.2	123.3
	,	,		,	-,	,	sum =	TOTAL	100.0%	1211.5	438.5	365.5	4325.5	13944.2	13758.2	216.2
							EPA line-haul du	uty cycle weighted br	ake-specific emi	ssions	0.362	0.30	3.6	11.5	11.4	0.18
							EPA line-haul du	uty cycle maximum T	ier 0			1.00	5.0	9.5	9.5	0.60
								EF	PA Switch Cycle							
Individual I	Notch brake	-specific em	issions									Weighted R	esults			
Individual I	Notch brake	-specific em bsfc	issions HC	СО	Corr. NOx	KH-NOx	PM		EPA	w-BHP	w-bsfc	Weighted R w-HC	esults w-CO	w-NOx	w-KH-NOx	w-PM
Notch	Notch brake			CO (g/hp-hr)	Corr. NOx (g/hp-hr)	KH-NOx (g/hp-hr)	PM (g/hp-hr)	Notch	WF	w-BHP		Ü		w-NOx w-(g/hr)	w-KH-NOx w-(g/hr)	w-PM w-(g/hr)
	Notch brake	bsfc	HC					Notch DB-2		w-BHP	w-bsfc	w-HC	w-CO			w-(g/hr) 0.0
Notch	Notch brake	bsfc (lb/hp-hr)	HC (g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)	(g/hp-hr)		WF		w-bsfc w-(lb/hp-hr)	w-HC w-(g/hr)	w-CO w-(g/hr)	w-(g/hr)	w-(g/hr)	w-(g/hr)
Notch DB-2	Notch brake	bsfc (lb/hp-hr) 2.000	HC (g/hp-hr) 8.95	(g/hp-hr) 17.64	(g/hp-hr) 50.36	(g/hp-hr) 49.62	(g/hp-hr) 1.64 2.40 2.40	DB-2	WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4	w-HC w-(g/hr) 0.0	w-CO w-(g/hr) 0.0 52.3 69.7	w-(g/hr) 0.0 90.9 196.4	w-(g/hr) 0.0 89.8 193.4	w-(g/hr) 0.0 7.2 7.2
Notch DB-2 Low Idle	Notch brake	bsfc (lb/hp-hr) 2.000 1.760	HC (g/hp-hr) 8.95 18.70	(g/hp-hr) 17.64 17.50	(g/hp-hr) 50.36 30.40	(g/hp-hr) 49.62 30.03	(g/hp-hr) 1.64 2.40	DB-2 Low Idle	WF 0.0% 29.9%	0.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.3	w-HC w-(g/hr) 0.0 55.9	w-CO w-(g/hr) 0.0 52.3	w-(g/hr) 0.0 90.9	w-(g/hr) 0.0 89.8	w-(g/hr) 0.0 7.2
Notch DB-2 Low Idle Idle	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460	HC (g/hp-hr) 8.95 18.70 15.40	(g/hp-hr) 17.64 17.50 23.30	(g/hp-hr) 50.36 30.40 65.70	(g/hp-hr) 49.62 30.03 64.69	(g/hp-hr) 1.64 2.40 2.40	DB-2 Low Idle Idle	WF 0.0% 29.9% 29.9%	0.0 3.0 3.0	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4	w-HC w-(g/hr) 0.0 55.9 46.0	w-CO w-(g/hr) 0.0 52.3 69.7	w-(g/hr) 0.0 90.9 196.4	w-(g/hr) 0.0 89.8 193.4	w-(g/hr) 0.0 7.2 7.2
Notch DB-2 Low Idle Idle N1	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430	HC (g/hp-hr) 8.95 18.70 15.40 0.59	(g/hp-hr) 17.64 17.50 23.30 0.57	(g/hp-hr) 50.36 30.40 65.70 11.65	(g/hp-hr) 49.62 30.03 64.69 11.50	(g/hp-hr) 1.64 2.40 2.40 0.21	DB-2 Low Idle Idle N1	WF 0.0% 29.9% 29.9% 12.4%	0.0 3.0 3.0 23.9	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3	w-HC w-(g/hr) 0.0 55.9 46.0 14.1	w-CO w-(g/hr) 0.0 52.3 69.7 13.6	w-(g/hr) 0.0 90.9 196.4 278.9	w-(g/hr) 0.0 89.8 193.4 275.1	w-(g/hr) 0.0 7.2 7.2 5.0
Notch DB-2 Low Idle Idle N1 N2	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18	DB-2 Low Idle Idle N1 N2	WF 0.0% 29.9% 29.9% 12.4% 12.3%	0.0 3.0 3.0 23.9 61.5	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3	w-(g/hr) 0.0 90.9 196.4 278.9 728.5	w-(g/hr) 0.0 89.8 193.4 275.1 718.5	w-(g/hr) 0.0 7.2 7.2 5.0 10.8
Notch DB-2 Low Idle Idle N1 N2 N3	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.388	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.18	DB-2 Low Idle Idle N1 N2 N3	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8%	0.0 3.0 3.0 23.9 61.5 59.8	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6
Notch DB-2 Low Idle Idle N1 N2 N3 N4	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.388 0.370	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30 0.22	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52 3.55	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34 15.34	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13 15.11	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.18 0.19	DB-2 Low Idle Idle N1 N2 N3 N4	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6%	0.0 3.0 3.0 23.9 61.5 59.8 55.8	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2 20.6	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0 12.5	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6 198.1	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4 855.2	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9 842.8	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6 10.8
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.388 0.370 0.365	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30 0.22 0.22	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52 3.55 5.27	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34 15.34 13.79	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13 15.11 13.60	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.18 0.19 0.18	DB-2 Low Idle Idle N1 N2 N3 N4 N5	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6%	0.0 3.0 3.0 23.9 61.5 59.8 55.8 80.0	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2 20.6 29.2	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0 12.5 17.7	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6 198.1 421.4	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4 855.2 1102.8	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9 842.8 1087.5	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6 10.8 14.5
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.370 0.365 0.350	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30 0.22 0.22 0.23	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52 3.55 5.27 4.88	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34 15.34 13.79 12.30	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13 15.11 13.60 12.13	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.18 0.19 0.18	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5%	0.0 3.0 3.0 23.9 61.5 59.8 55.8 80.0 44.1	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2 20.6 29.2 15.4	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0 12.5 17.7	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6 198.1 421.4 215.2	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4 855.2 1102.8 542.1	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9 842.8 1087.5 534.8	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6 10.8 14.5 7.1
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.388 0.370 0.365 0.350 0.342	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30 0.22 0.22 0.23 0.23	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52 3.55 5.27 4.88 3.53	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34 15.34 13.79 12.30 11.81	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13 15.11 13.60 12.13 11.67	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.19 0.18 0.19 0.18	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 3.6% 1.5% 0.2%	0.0 3.0 3.0 23.9 61.5 59.8 55.8 80.0 44.1 7.3	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2 20.6 29.2 15.4 2.5	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0 12.5 17.7 10.0 1.7	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6 198.1 421.4 215.2 25.9	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4 855.2 1102.8 542.1 86.6	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9 842.8 1087.5 534.8 85.5	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6 10.8 14.5 7.1 1.0
Notch DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	Notch brake	bsfc (lb/hp-hr) 2.000 1.760 2.460 0.430 0.384 0.388 0.370 0.365 0.350 0.342	HC (g/hp-hr) 8.95 18.70 15.40 0.59 0.32 0.30 0.22 0.22 0.23 0.23	(g/hp-hr) 17.64 17.50 23.30 0.57 0.59 1.52 3.55 5.27 4.88 3.53	(g/hp-hr) 50.36 30.40 65.70 11.65 11.85 15.34 15.34 13.79 12.30 11.81	(g/hp-hr) 49.62 30.03 64.69 11.50 11.68 15.13 15.11 13.60 12.13 11.67	(g/hp-hr) 1.64 2.40 2.40 0.21 0.18 0.19 0.18 0.19 0.18 0.17	DB-2 Low Idle Idle N1 N2 N3 N4 N5 N6 N7	WF 0.0% 29.9% 29.9% 12.4% 12.3% 5.8% 3.6% 1.5% 0.2% 0.8% 100.0%	0.0 3.0 3.0 23.9 61.5 59.8 55.8 80.0 44.1 7.3 36.0 374.4	w-bsfc w-(lb/hp-hr) 0.0 5.3 7.4 10.3 23.6 23.2 20.6 29.2 15.4 2.5 12.5	w-HC w-(g/hr) 0.0 55.9 46.0 14.1 19.4 18.0 12.5 17.7 10.0 1.7	w-CO w-(g/hr) 0.0 52.3 69.7 13.6 36.3 90.6 198.1 421.4 215.2 25.9 121.3	w-(g/hr) 0.0 90.9 196.4 278.9 728.5 917.4 855.2 1102.8 542.1 86.6 363.1	w-(g/hr) 0.0 89.8 193.4 275.1 718.5 904.9 842.8 1087.5 534.8 85.5 358.3	w-(g/hr) 0.0 7.2 7.2 5.0 10.8 10.6 10.8 14.5 7.1 1.0 6.1

UP No. 9733 Smoke Test Summary

SMOKE TEST SUMMARY FOR UP NO. 9733

Run #	SS	30-sec	3-sec				
Carb Diesel (EM-2663-F)							
# 1	10	27	86				
# 2	8	24	80				
# 3	11	28	85				
Avg	10	26	84				
COV	16%	9%	4%				
On-Highway	Diesel (E	EM-2677-F)					
# 1	10	21	73				
# 2	9	21	76				
# 3	10	28	88				
Avg	10	23	79				
COV	6%	17%	10%				
Nonroad Hig	gh Sulfur	Diesel (EM	-2664-F)				
# 1	8	20	75				
# 2	10	22	79				
# 3	10	25	85				
Avg	9	22	80				
cov	12%	10%	6%				
Fuel #4 Ner		o/ Cultur Di	oool (EM 97				

Fuel #4, Nonroad 0.3% Sulfur Diesel (EM-2708-F)

# 1	9	21	80
# 2	11	24	80
# 3	11	25	85
Avg	10	23	82
COV	11%	8%	4%

updated 5/28/99 sgf

APPENDIX G

Benzene and 1,3 Butadiene Data

Appendix G: Benzene Emissions Summary

BNSF No. 9693

Benzene Mass Emission Rate, g/hr			Benzene Brak	Benzene Brake-Specific Emissions, mg/hp-hr			
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	0.3	2.8	0.0	14.43	146.84	0.00	
ldle	0.2	0.1	0.2	15.14	5.88	11.68	
Notch 1	0.3	0.3	0.3	1.32	1.31	1.44	
Notch 2	0.4	0.5	0.3	0.81	1.04	0.72	
Notch 3	0.6	0.5	0.5	0.65	0.49	0.55	
Notch 4	0.6	0.7	0.5	0.39	0.44	0.35	
Notch 5	1.4	1.6	1.4	0.70	0.78	0.71	
Notch 6	2.6	3.0	3.3	0.90	1.05	1.14	
Notch 7	4.1	2.5	2.9	1.11	0.68	0.80	
Notch 8	4.1	3.8	3.0	0.98	0.91	0.71	
		EPA Line-I	Haul Duty-Cycle Composite =	1.02	1.64	0.76	m

BNSF No. 9754

Benzene Mass Emission Rate, g/hr			Rate, g/hr	Benzene Brake-Specific Emissions, mg/hp-hr			
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	<u></u>
DB-2	0.2	0.3	0.2	11.52	13.09	11.79	_
Idle	0.1	0.2	0.1	10.92	13.34	6.45	
Notch 1	0.3	0.1	0.1	1.62	0.68	0.64	
Notch 2	0.3	0.0	0.0	0.78	0.00	0.03	
Notch 3	0.4	0.0	0.0	0.38	0.00	0.00	
Notch 4	0.5	0.0	0.1	0.35	0.00	0.07	
Notch 5	0.2	1.0	0.0	0.09	0.52	0.00	
Notch 6	2.5	0.5	0.4	0.87	0.18	0.14	
Notch 7	1.6	0.6	0.0	0.43	0.17	0.00	
Notch 8	1.3	0.0	0.3	0.31	0.00	0.08	
		EPA Line-l	laul Duty-Cycle Composite =	0.48	0.18	0.15	mg/hp-hr

BNSF No. 9696

No Benzene measurements were made on BNSF No. 9696.

UP No. 9715

Benzene Mass Emission Rate, g/hr			Rate, g/hr	Benzene Brake-Specific Emissions, mg/hp-hr			
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	0.8	0.7	0.9	37.16	29.75	39.39	<u></u>
Low Idle	0.5	0.4	0.8	51.77	37.83	81.57	
Idle	0.4	0.6	0.6	31.85	57.88	57.78	
Notch 1	0.2	0.3	0.2	1.07	1.48	1.24	
Notch 2	0.4	1.5	0.3	0.70	2.95	0.55	
Notch 3	1.4	1.2	1.2	1.32	1.13	1.20	
Notch 4	2.0	2.5	2.2	1.32	1.64	1.44	
Notch 5	3.6	4.5	5.2	1.61	2.01	2.34	
Notch 6	3.5	3.9	2.5	1.19	1.34	0.84	
Notch 7	3.3	4.7	2.6	0.90	1.28	0.71	
Notch 8	5.3	6.7	3.0	1.18	1.49	0.67	
		EPA Line-H	laul Duty-Cycle Composite =	1.42	1.76	1.19	mg/hp-hr

UP No. 9724

Benzene Mass Emission Rate, g/hr			Benzene Brake-Specific Emissions, mg/hp-hr				
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	1.3	1.2	1.5	53.84	52.39	61.08	<u>—</u>
Low Idle	1.2	1.1	0.2	102.85	90.72	14.94	
ldle	0.7	1.0	0.8	62.46	85.94	64.68	
Notch 1	0.6	0.4	0.6	2.86	1.79	3.07	
Notch 2	1.1	0.7	1.0	2.18	1.38	2.03	
Notch 3	2.9	3.2	4.9	2.81	3.08	4.78	
Notch 4	4.8	3.6	4.2	3.13	2.35	2.69	
Notch 5	5.7	4.4	6.2	2.58	1.99	2.77	
Notch 6	5.0	3.6	5.8	1.71	1.24	1.97	
Notch 7	4.5	5.8	9.1	1.23	1.59	2.49	
Notch 8	11.6	6.7	11.8	2.57	1.49	2.62	
		EPA Line-F	laul Duty-Cycle Composite =	2.84	2.08	2.94	mg/hp-hr

UP No. 9733

No Benzene measurements were made on UP No. 9733

Appendix G-2: 1,3 Butadiene Emissions Summary

BNSF No. 9693

	1,3 Butadier	ne Mass Emissi	on Rate, g/hr	1,3 Butadiene Brake-Specific Emissions, mg/hp-hr				
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur		
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F		
DB-2	0.4	0.5	0.2	19.28	23.39	8.00		
Idle	0.0	0.2	0.2	0.00	15.70	15.87		
Notch 1	0.0	0.3	0.2	0.00	1.25	1.12		
Notch 2	0.4	0.2	0.2	0.81	0.36	0.51		
Notch 3	0.0	0.0	0.3	0.00	0.00	0.34		
Notch 4	0.9	0.8	2.0	0.58	0.51	1.35		
Notch 5	2.9	2.8	2.9	1.43	1.41	1.43		
Notch 6	5.7	5.7	5.3	1.97	1.98	1.83		
Notch 7	5.1	6.0	7.4	1.39	1.64	2.02		
Notch 8	5.8	6.7	6.7	1.38	1.59	1.58		
		EPA Line-l	laul Duty-Cycle Composite =	1.40	1.60	1.60	mg/hp-hr	

BNSF No. 9754

	1,3 Butadiene Mass Emission Rate, g/hr			1,3 Butadiene	Brake-Specific	1,3 Butadiene Brake-Specific Emissions, mg/hp-hi		
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur		
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	_	
DB-2	0.3	0.3	0.3	13.02	13.95	14.13		
Idle	0.2	0.0	0.2	12.96	3.13	12.69		
Notch 1	0.3	0.2	0.3	1.51	1.00	1.60		
Notch 2	0.4	0.3	0.5	0.93	0.74	1.04		
Notch 3	0.4	0.7	0.5	0.39	0.73	0.46		
Notch 4	0.7	1.1	1.3	0.47	0.69	0.85		
Notch 5	1.6	2.2	2.3	0.80	1.08	1.12		
Notch 6	3.7	4.5	4.7	1.30	1.55	1.63		
Notch 7	3.5	5.2	5.1	0.95	1.43	1.40		
Notch 8	4.5	5.4	4.9	1.08	1.29	1.16		
		EPA Line-l	laul Duty-Cycle Composite =	1.10	1.31	1.28	mg/hp-hr	

BNSF No. 9696

No 1,3 Butadiene measurements were made on BNSF No. 9696.

UP No. 9715

	1,3 Butadiene Mass Emission Rate, g/hr			1,3 Butadiene	1,3 Butadiene Brake-Specific Emissions, mg/hp-hr			
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	•	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F		
DB-2	0.9	1.4	1.3	40.80	56.73	55.39		
Low Idle	0.6	0.9	1.0	57.77	85.90	99.29		
ldle	0.6	1.0	0.7	39.86	91.61	64.25		
Notch 1	0.3	0.4	0.9	1.44	2.19	4.82		
Notch 2	0.4	0.7	0.6	0.85	1.37	1.29		
Notch 3	2.0	2.9	2.6	1.96	2.76	2.55		
Notch 4	4.5	5.6	4.4	2.90	3.59	2.83		
Notch 5	5.2	6.8	4.7	2.35	3.04	2.11		
Notch 6	5.5	1.9	6.0	1.87	0.65	2.03		
Notch 7	4.6	7.2	5.8	1.25	1.97	1.59		
Notch 8	9.3	9.7	8.6	2.08	2.17	1.93		
		EPA Line-l	laul Duty-Cycle Composite =	2.26	2.59	2.40	mg/hp-hr	

UP No. 9724

	1,3 Butadien	e Mass Emissi	on Rate, g/hr	1,3 Butadiene Brake-Specific Emissions, mg/hp-hr				
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur		
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F		
DB-2	1.1	1.3	1.3	45.42	58.45	52.89		
Low Idle	1.3	1.3	0.8	105.47	112.31	70.16		
Idle	1.0	0.7	0.7	81.89	57.14	58.55		
Notch 1	0.3	0.3	0.3	1.51	1.51	1.51		
Notch 2	0.5	0.5	0.6	1.00	0.99	1.20		
Notch 3	2.1	2.4	3.3	1.98	2.34	3.17		
Notch 4	2.7	2.8	3.3	1.78	1.80	2.13		
Notch 5	2.7	3.5	3.5	1.22	1.57	1.55		
Notch 6	1.8	2.8	3.3	0.61	0.96	1.14		
Notch 7	1.8	2.9	3.7	0.49	0.79	1.02		
Notch 8	2.8	4.5	6.2	0.61	1.01	1.38		
		EPA Line-l	laul Duty-Cycle Composite =	1.25	1.58	1.81	mg/hp-hr	

UP No. 9733

No 1,3 Butadiene measurements were made on UP No. 9733

APPENDIX H

Formaldehyde, Acetaldehyde, and Acrolein Data

Appendix H-1: Formaldehyde Emissions Summary

BNSF No. 9693

	Formaldehy	de Mass Emissi	on Rate, g/hr	Formaldehyde	Brake-Specifi	c Emissions,	mg/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	8.6	14.4	8.2	443.53	745.94	426.95	
Idle	2.3	2.8	2.6	172.29	206.76	193.46	
Notch 1	3.7	2.7	3.1	18.12	12.99	15.20	
Notch 2	4.6	4.0	4.0	10.48	9.18	9.24	
Notch 3	6.8	5.4	7.2	6.89	5.48	7.30	
Notch 4	12.6	9.5	10.2	8.31	6.27	6.74	
Notch 5	21.8	21.3	20.1	10.86	10.60	9.99	
Notch 6	48.3	47.1	46.1	16.76	16.30	16.01	
Notch 7	69.5	59.6	61.4	19.01	16.33	16.80	
Notch 8	88.9	79.2	82.4	21.14	18.83	19.58	
		EPA Line-l	laul Duty-Cycle Composite =	20.72	20.43	19.27	ma/hp-hr

BNSF No. 9754

	Formaldehyde Mass Emission Rate, g/hr			Formaldehyde	Formaldehyde Brake-Specific Emissions, mg/hp-hr			
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur		
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	_	
DB-2	5.2	3.0	20.8	265.22	154.07	1074.37		
Idle	2.6	1.3	5.1	190.29	93.30	375.07		
Notch 1	4.6	2.5	6.6	22.55	12.21	32.47		
Notch 2	6.4	4.8	8.9	14.68	10.98	20.24		
Notch 3	9.2	7.2	12.3	9.42	7.37	12.54		
Notch 4	23.8	5.8	16.8	15.68	3.82	11.08		
Notch 5	23.1	21.9	33.0	11.53	10.92	16.48		
Notch 6	59.5	0.3	57.8	20.61	0.09	20.06		
Notch 7	62.4	11.6	80.1	17.09	3.17	21.91		
Notch 8	97.1	78.5	93.4	23.05	18.64	22.20		
		EPA Line-l	laul Duty-Cycle Composite =	21.90	14.09	26.97	mg/hp-hr	

BNSF No. 9696

No formaldehyde measurements were made on BNSF No. 9696.

UP No. 9715

	Formaldehyd	le Mass Emissi	on Rate, g/hr	Formaldehyde	Brake-Specific	c Emissions, I	mg/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	20.4	12.4	12.0	927.73	496.96	519.76	<u></u>
Low Idle	18.7	8.0	8.8	1865.78	728.26	880.41	
ldle	18.1	10.9	6.7	1292.64	989.05	605.54	
Notch 1	4.9	2.7	2.5	25.38	14.89	12.77	
Notch 2	6.9	4.2	3.9	13.74	8.30	7.92	
Notch 3	22.3	17.4	19.7	21.49	16.87	19.32	
Notch 4	43.2	28.3	24.3	27.84	18.25	15.81	
Notch 5	48.3	37.3	38.7	21.75	16.77	17.42	
Notch 6	52.7	37.6	40.1	17.93	12.78	13.65	
Notch 7	58.8	43.8	42.6	16.05	11.94	11.62	
Notch 8	60.6	58.2	53.1	13.49	13.01	11.84	
		EPA Line-l	laul Duty-Cycle Composite =	23.81	17.69	16.44	mg/hp-hr

UP No. 9724

	Formaldehyd	le Mass Emissi	on Rate, g/hr	Formaldehyde	Brake-Specific	: Emissions, ı	ng/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	_
DB-2	20.2	23.2	27.0	809.32	1009.54	1080.21	
Low Idle	12.7	21.9	13.6	1058.85	1825.71	1233.51	
Idle	15.6	13.4	13.3	1299.84	1120.07	1110.83	
Notch 1	4.9	4.4	4.6	24.88	22.18	23.22	
Notch 2	9.6	9.8	7.6	19.35	19.77	15.39	
Notch 3	18.5	23.0	25.6	17.86	22.28	24.76	
Notch 4	19.0	33.4	34.9	12.26	21.55	22.53	
Notch 5	50.9	38.4	42.2	22.85	17.27	18.94	
Notch 6	43.9	37.9	44.6	14.91	12.88	15.17	
Notch 7	50.0	33.4	28.7	13.67	9.11	7.84	
Notch 8	62.1	55.5	66.6	13.79	12.36	14.80	
		EPA Line-F	laul Duty-Cycle Composite =	21.31	21.59	22.38	mg/hp-hr

UP No. 9733

No formaldehyde measurements were made on UP No. 9733

Appendix H-2: Acetaldehyde Emissions Summary

BNSF No. 9693

	Acetaldehyd	de Mass Emissi	on Rate, g/hr	Acetaldehyde	Brake-Specific	Emissions, m	ng/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	7.1	5.6	7.7	367.46	291.35	398.37	_
Idle	1.2	1.4	1.3	90.77	103.34	97.92	
Notch 1	2.1	1.5	1.7	10.40	7.26	8.37	
Notch 2	2.8	2.5	2.4	6.50	5.63	5.43	
Notch 3	4.3	2.9	3.9	4.34	2.93	3.96	
Notch 4	6.2	5.5	6.5	4.05	3.63	4.28	
Notch 5	11.2	10.0	8.2	5.56	5.00	4.06	
Notch 6	20.4	20.1	17.3	7.08	6.96	6.01	
Notch 7	30.1	27.4	24.9	8.22	7.50	6.81	
Notch 8	39.7	33.9	32.4	9.45	8.05	7.71	
		EPA Line-I	laul Duty-Cycle Composite =	10.32	8.85	9.07	mg/hp-hr

BNSF No. 9754

	Acetaldehyd	e Mass Emissi	on Rate, g/hr	Acetaldehyde	Acetaldehyde Brake-Specific Emissions, mg/hp-h				
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur			
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	<u></u>		
DB-2	3.4	0.9	7.9	172.58	46.15	406.62	_		
ldle	1.5	0.4	2.3	110.34	26.38	166.75			
Notch 1	2.6	1.0	2.9	12.69	4.76	14.40			
Notch 2	4.4	2.2	4.5	10.00	4.99	10.36			
Notch 3	6.7	3.8	6.7	6.81	3.90	6.86			
Notch 4	16.1	2.6	9.1	10.64	1.71	6.00			
Notch 5	12.5	10.5	19.6	6.21	5.23	9.77			
Notch 6	27.7	0.0	24.5	9.59	0.00	8.49			
Notch 7	32.1	6.8	36.3	8.78	1.86	9.94			
Notch 8	46.0	33.1	41.4	10.91	7.86	9.83			
		EPA Line-l		11.15	5.95	11.88	mg/hp-hr		

BNSF No. 9696

No acetaldehyde measurements were made on BNSF No. 9696.

UP No. 9715

	Acetaldehyd	e Mass Emissi	on Rate, g/hr	Acetaldehyde	Brake-Specific	Emissions, m	g/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	8.7	5.0	4.7	397.37	199.08	205.11	_
Low Idle	8.3	3.4	3.7	831.19	305.29	373.33	
Idle	7.4	4.3	2.6	527.78	389.88	238.73	
Notch 1	2.6	1.1	1.1	13.47	6.42	5.76	
Notch 2	3.9	2.0	1.9	7.85	3.94	3.79	
Notch 3	10.0	6.7	7.3	9.66	6.52	7.15	
Notch 4	18.6	9.7	7.7	12.00	6.24	4.98	
Notch 5	20.0	13.4	12.7	8.99	6.04	5.69	
Notch 6	22.3	13.4	14.2	7.58	4.55	4.85	
Notch 7	24.9	16.0	16.3	6.80	4.36	4.45	
Notch 8	31.3	20.0	19.2	6.96	4.47	4.29	
		EPA Line-l	Haul Duty-Cycle Composite =	10.97	6.47	6.09	mg/hp-h

UP No. 9724

	Acetaldehyd	e Mass Emissi	on Rate, g/hr	Acetaldehyde	Brake-Specific	Emissions, n	ng/hp-hr
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	<u></u>
DB-2	8.4	8.3	10.7	334.03	360.90	426.14	
Low Idle	5.5	5.8	5.5	457.79	483.11	498.82	
Idle	6.2	5.2	5.2	520.78	437.35	432.38	
Notch 1	2.1	0.8	1.9	10.81	4.30	9.64	
Notch 2	4.1	4.5	3.1	8.17	9.07	6.26	
Notch 3	7.2	8.9	9.6	6.91	8.59	9.27	
Notch 4	7.6	12.1	12.4	4.93	7.83	7.98	
Notch 5	18.0	14.8	16.1	8.07	6.67	7.21	
Notch 6	15.7	14.6	16.2	5.34	4.97	5.50	
Notch 7	18.4	13.3	15.1	5.03	3.62	4.12	
Notch 8	22.2	19.7	26.3	4.94	4.38	5.83	
		EPA Line-H	laul Duty-Cycle Composite =	8.10	7.59	8.80	mg/hp-hr

UP No. 9733

No acetaldehyde measurements were made on UP No. 9733

Appendix H-3: Acrolein Emissions Summary

BNSF No. 9693

	Acrolein	Mass Emission	Rate, g/hr	Acrolein Brake	e-Specific Emis	cific Emissions, mg/hp-hr		
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur		
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F		
DB-2	0.7	0.3	0.5	35.52	13.85	28.42	<u> </u>	
Idle	0.0	0.1	0.3	0.00	10.85	19.35		
Notch 1	0.8	0.2	0.2	3.99	1.22	0.93		
Notch 2	0.9	0.2	0.4	2.13	0.37	0.98		
Notch 3	1.4	0.3	0.8	1.46	0.26	0.84		
Notch 4	1.9	1.0	3.9	1.26	0.67	2.56		
Notch 5	2.8	2.1	4.0	1.41	1.02	2.01		
Notch 6	6.5	3.6	6.5	2.25	1.26	2.25		
Notch 7	8.4	4.2	10.2	2.28	1.15	2.79		
Notch 8	10.1	10.0	12.9	2.40	2.38	3.05		
		EPA Line-l	laul Duty-Cycle Composite =	2.38	1.88	2.85	mg/hp-hr	

BNSF No. 9754

	Acrolein N	Mass Emission	Rate, g/hr	Acrolein Brake-Specific Emissions, mg/hp-hr						
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur				
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	<u></u>			
DB-2	0.1	0.1	0.4	5.68	3.85	19.52	 '			
ldle	0.1	0.0	0.0	5.97	0.00	3.51				
Notch 1	0.3	0.0	0.2	1.57	0.00	0.74				
Notch 2	0.2	0.2	0.3	0.52	0.34	0.72				
Notch 3	0.7	0.0	0.1	0.69	0.00	0.13				
Notch 4	1.1	0.0	0.2	0.75	0.00	0.13				
Notch 5	1.4	0.2	0.7	0.69	0.11	0.34				
Notch 6	4.0	0.0	2.8	1.39	0.00	0.98				
Notch 7	3.9	0.0	3.0	1.07	0.00	0.81				
Notch 8	7.1	2.5	4.0	1.69	0.59	0.94				
		EPA Line-l	laul Duty-Cycle Composite =	1.44	0.39	0.91	mg/hp-hr			

BNSF No. 9696

No acrolein measurements were made on BNSF No. 9696.

UP No. 9715

	Acrolein N	lass Emission	Rate, g/hr	Acrolein Brake-Specific Emissions, mg/hp-h					
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur			
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F			
DB-2	2.1	1.2	0.7	94.49	46.04	30.62	<u></u>		
Low Idle	2.0	0.7	0.6	201.42	65.71	60.24			
Idle	2.2	1.0	0.5	158.49	90.16	49.49			
Notch 1	0.5	0.2	0.1	2.32	1.19	0.63			
Notch 2	0.6	0.2	0.1	1.21	0.34	0.25			
Notch 3	1.4	0.7	0.8	1.32	0.68	0.80			
Notch 4	2.8	1.1	0.9	1.83	0.74	0.58			
Notch 5	5.7	1.5	1.2	2.58	0.68	0.55			
Notch 6	5.9	1.3	1.2	2.00	0.45	0.42			
Notch 7	4.0	1.1	1.2	1.09	0.30	0.32			
Notch 8	12.9	2.0	1.8	2.88	0.44	0.41			
		EPA Line-H	laul Duty-Cycle Composite =	3.29	0.86	0.69	mg/hp-hr		

UP No. 9724

	Acrolein N	lass Emission	Rate, g/hr	Acrolein Brake	sions, mg/hp	-hr	
Notch	CARB	On-Hwy	High Sulfur	CARB	On-Hwy	High Sulfur	
	EM-2663-F	EM-2677-F	EM-2664-F	EM-2663-F	EM-2677-F	EM-2664-F	
DB-2	1.9	2.1	3.3	77.31	90.27	131.56	
Low Idle	1.3	2.4	1.2	111.86	198.94	111.39	
Idle	1.6	1.1	1.0	131.83	94.13	86.54	
Notch 1	0.4	0.4	0.4	2.05	2.12	2.12	
Notch 2	0.3	0.5	0.3	0.65	0.92	0.64	
Notch 3	0.3	1.0	0.9	0.31	1.00	0.90	
Notch 4	0.1	0.7	1.3	0.10	0.48	0.83	
Notch 5	1.7	0.3	1.0	0.79	0.11	0.43	
Notch 6	1.2	0.6	1.0	0.42	0.19	0.35	
Notch 7	1.2	0.0	0.0	0.34	0.00	0.00	
Notch 8	0.5	1.0	1.1	0.12	0.23	0.24	
		EPA Line-l	laul Duty-Cycle Composite =	0.91	1.05	1.03	mg/hp-hr

UP No. 9733

No acrolein measurements were made on UP No. 9733

APPENDIX I

PAH Data

APPENDIX I-1: LOCOMOTIVE BN9693 CARB Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch			
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00			
				PARTICU	LATE FRA	CTION								
NAPHTHALENE		0.37	ND, <0.07	0.46	ND, <0.05	ND, <0.09	1.22	ND, <0.16	ND, <0.27	ND, <0.36	4.0			
2-METHYLNAPHTHALENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.05	0.47	0.61	ND, <0.16	ND, <0.27	ND, <0.36	4.0			
ACENAPHTHYLENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.05	ND, <0.09	ND, <0.12	ND, <0.16	TRACE	ND, <0.36	TRACE			
ACENAPHTHENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.05	ND, <0.09	ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
FLUORENE		ND, <0.04	ND, <0.07	ND, <0.05	TRACE	TRACE	ND, <0.12	ND, <0.16	0.93	TRACE	TRACE			
PHENANTHRENE		ND, <0.04	ND, <0.07	ND, <0.05	1.44	1.33	2.80	8.32	32.68	19.14	17.2			
ANTHRACENE		ND, <0.04	ND, <0.07	ND, <0.05	TRACE	TRACE	TRACE	0.78	3.59	1.99	2.0			
FLUORANTHENE		0.44	0.82	1.32	2.19	2.79	5.78	9.42	14.61	14.09	15.4			
PYRENE		0.65	1.45	2.26	3.34	5.21	10.34	17.26	23.91	27.09	30.0			
BENZO(A)ANTHRACENE		TRACE	TRACE	0.23	0.39	0.71	0.73	0.86	0.93	1.44	1.6			
CHRYSENE		0.26	0.50											
BENZO(B)FLUORANTHENE			TRACE	0.30										
BENZO(K)FLUORANTHENE		TRACE	TRACE	0.23					TRACE	ND, <0.36	1.4			
BENZO(E)PYRENE		TRACE	TRACE	0.16	0.26			0.86	-	TRACE	1.8			
BENZO(A)PYRENE		_	TRACE	TRACE	TRACE	TRACE	TRACE		TRACE	TRACE	TRACE			
PERYLENE		,					ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
INDENO(123-CD)PYRENE		,	TRACE	0.16		TRACE	TRACE	TRACE	TRACE	ND, <0.36	ND, <0.40			
DIBENZ(AH)ANTHRACENE			-	ND, <0.05				ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
BENZO(GHI)PERYLENE			TRACE	0.23	0.31	0.33		,	,		,			
			-		R FRACTI									
NAPHTHALENE		ND. <0.04	ND. <0.07	ND, <0.05			ND. <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
2-METHYLNAPHTHALENE		47.98			110.57			94.15		,	,			
ACENAPHTHYLENE		ND, <0.04			ND, <0.05			ND, <0.16	ND, <0.27	ND. <0.36	ND. <0.40			
ACENAPHTHENE		,	,	ND, <0.05	,	,	,	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
FLUORENE		2.03						ND, <0.16	ND, <0.27	ND, <0.36	6.0			
PHENANTHRENE		9.96												
ANTHRACENE		ND, <0.04		1.76		ND, <0.09	3.04		ND, <0.27	4.70				
FLUORANTHENE		ND, <0.04		2.01					ND, <0.27	ND, <0.36	6.4			
PYRENE		,	ND, <0.07	1.92					ND, <0.27	ND, <0.36	3.8			
BENZO(A)ANTHRACENE				ND, <0.05				ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
CHRYSENE		ND, <0.04		ND, <0.05		ND, <0.09	ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
BENZO(B)FLUORANTHENE			ND, <0.07		ND, <0.05	ND, <0.09	ND, <0.12	ND, <0.16	ND, <0.27 ND, <0.27	ND, <0.36	ND, <0.40			
BENZO(K)FLUORANTHENE			ND, <0.07		ND, <0.05		ND, <0.12 ND. <0.12	ND. <0.16	ND, <0.27 ND. <0.27	ND, <0.36	ND, <0.40			
BENZO(E)PYRENE		ND, <0.04 ND, <0.04			ND, <0.05 ND, <0.05	,	ND, <0.12 ND, <0.12	ND, <0.16 ND, <0.16	ND, <0.27 ND, <0.27	ND, <0.36 ND, <0.36	ND, <0.40 ND, <0.40			
. ,			ND, <0.07 ND, <0.07		ND, <0.05 ND, <0.05	ND, <0.09 ND, <0.09	,	ND, <0.16 ND, <0.16	,	,	,			
BENZO(A)PYRENE			ND, <0.07 ND, <0.07		ND, <0.05 ND, <0.05	ND, <0.09 ND, <0.09	ND, <0.12	ND, <0.16 ND, <0.16	ND, <0.27	ND, <0.36 ND, <0.36	ND, <0.40			
PERYLENE		,	,	,	,	,	ND, <0.12	,	ND, <0.27	,	ND, <0.40			
INDENO(123-CD)PYRENE		,			ND, <0.05	,	ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
DIBENZ(AH)ANTHRACENE							ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			
BENZO(GHI)PERYLENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.05	ND, <0.09	ND, <0.12	ND, <0.16	ND, <0.27	ND, <0.36	ND, <0.40			

APPENDIX I-2: LOCOMOTIVE BN9693 On-Highway Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch			
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00			
			1	PARTICUL	ATE FRAC	CTION								
NAPHTHALENE		ND, <0.04	ND, <0.07	1.47	2.49	3.58	6.68	ND, <0.18	15.28	15.94	3.48			
2-METHYLNAPHTHALENE		ND, <0.04	0.37	1.23	1.56	1.53	5.20	ND, <0.18	8.92	6.37	6.96			
ACENAPHTHYLENE		TRACE	TRACE	TRACE	TRACE	ND, <0.10	TRACE	ND, <0.18	TRACE	TRACE	TRACE			
ACENAPHTHENE		ND, <0.04	ND, <0.07	0.29	0.47	0.56	0.74	ND, <0.18	1.78	2.71	TRACE			
FLUORENE		ND, <0.04	ND, <0.07	TRACE	TRACE	TRACE	TRACE	ND, <0.18	1.91	1.75	1.91			
PHENANTHRENE		0.24	0.81	1.37		3.88	10.10							
ANTHRACENE		ND, <0.04	ND, <0.07	TRACE	TRACE	TRACE	0.74	1.76	7.64					
FLUORANTHENE		0.57	1.62					12.32	19.11	19.12	19.14			
PYRENE		1.11	2.72	4.17				33.44						
BENZO(A)ANTHRACENE		0.16	TRACE	0.44		0.87	0.74	1.50	1.53					
CHRYSENE		0.29	0.48	0.86	1.25	1.99	2.23	3.96	5.09	5.74	7.48			
BENZO(B)FLUORANTHENE			TRACE	0.34		0.61	0.82				2.61			
BENZO(K)FLUORANTHENE		0.13	TRACE	0.59			0.74			TRACE	TRACE			
BENZO(E)PYRENE		TRACE	TRACE	0.22			0.82	0.97		1.27	2.61			
BENZO(A)PYRENE			TRACE	0.29			TRACE	0.62	1.02	TRACE	2.09			
PERYLENE			ND, <0.07			ND, <0.10		ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
INDENO(123-CD)PYRENE			TRACE	0.20		TRACE	TRACE	TRACE	ND, <0.25	ND, <0.32	ND, <0.35			
DIBENZ(AH)ANTHRACENE				ND, <0.05	ND, <0.06	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(GHI)PERYLENE		0.18	TRACE	0.32			0.89	1.58	1.15	1.59	2.26			
				VAPOI	R FRACTIO	ON								
NAPHTHALENE		ND, <0.04	ND, <0.07	49.02	62.25	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
2-METHYLNAPHTHALENE		126.09	235.07	220.59	435.78	408.85	408.30	703.97	573.17	812.76	678.45			
ACENAPHTHYLENE		0.37	ND, <0.07	2.45	3.74	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
ACENAPHTHENE		ND, <0.04	ND, <0.07	ND, <0.05	1.87	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
FLUORENE		4.93	8.81	16.18	26.15	15.33	14.10	38.72	11.46	27.09	40.01			
PHENANTHRENE		15.72	31.59	48.04	73.46	54.17	63.84	137.27	84.07	168.93	219.19			
ANTHRACENE		1.19	ND, <0.07	3.48	5.04	ND, <0.10	ND, <0.15	9.86	ND, <0.25	13.07	16.00			
FLUORANTHENE		1.52	3.09	3.60	5.20	3.68	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
PYRENE		1.88						5.72	ND, <0.25	ND, <0.32	11.83			
BENZO(A)ANTHRACENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.06	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
CHRYSENE				ND, <0.05		ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(B)FLUORANTHENE		ND, <0.04		ND, <0.05		ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(K)FLUORANTHENE		ND, <0.04		ND, <0.05		ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(E)PYRENE		ND, <0.04		ND, <0.05		ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(A)PYRENE		ND, <0.04		ND, <0.05		ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
PERYLENE			ND, <0.07				ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
INDENO(123-CD)PYRENE		ND, <0.04		ND, <0.05			ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
DIBENZ(AH)ANTHRACENE		,	ND, <0.07	,	,	ND, <0.10	,	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			
BENZO(GHI)PERYLENE		ND, <0.04	ND, <0.07	ND, <0.05	ND, <0.06	ND, <0.10	ND, <0.15	ND, <0.18	ND, <0.25	ND, <0.32	ND, <0.35			

APPENDIX I-3:LOCOMOTIVE BN9693

High-Sulfur, Nonroad Diesel

PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
				PARTICU	LATE FRA	ACTION							
NAPHTHALENE		ND, <0.04	ND, <0.06	ND, <0.05	0.29	2.76	7.46	5.43	ND, <0.23	9.84	15.18		
2-METHYLNAPHTHALENE		,	ND, <0.06		ND, <0.06	ND, <0.11	1.49	0.90	ND, <0.23	ND, <0.33	ND, <0.00		
ACENAPHTHYLENE			ND, <0.06				ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.00		
ACENAPHTHENE		,	ND, <0.06		ND, <0.06	,	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.00		
FLUORENE		ND, <0.04	,		,	ND, <0.11	ND, <0.15	ND, <0.18	TRACE	ND, <0.33	0.95		
PHENANTHRENE		0.32	0.25	0.92						17.39			
ANTHRACENE		,	ND, <0.06		TRACE	TRACE	TRACE	0.72					
FLUORANTHENE		0.61	0.78	1.53									
PYRENE		0.80	1.41	2.00									
BENZO(A)ANTHRACENE		0.15	TRACE	0.28	0.35	1.05	1.27	1.18	1.64	2.13	2.47		
CHRYSENE		0.34	0.53	0.84			3.58	4.16	6.11	6.73			
BENZO(B)FLUORANTHENE		0.17	TRACE	0.28	0.35						2.66		
BENZO(K)FLUORANTHENE		0.15	0.22	0.23	0.35	0.72	0.52	0.72	0.82	1.31	0.95		
BENZO(E)PYRENE		TRACE	TRACE	TRACE	TRACE	0.44	0.52	0.81	1.06	1.64	2.28		
BENZO(A)PYRENE		ND, <0.04	TRACE	TRACE	TRACE	TRACE	TRACE	0.72	0.82	1.31	2.09		
PERYLENE			ND, <0.06		ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.00		
INDENO(123-CD)PYRENE		TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	ND, <0.23	ND, <0.33	0.38		
DIBENZ(AH)ANTHRACENE		ND, <0.04					ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.00		
BENZO(GHI)PERYLENE		TRACE	0.22	TRACE		TRACE	0.60	1.18	1.64	1.97	2.85		
				VAPO	OR FRACT	ION							
NAPHTHALENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	55.19	596.91	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
2-METHYLNAPHTHALENE		124.27	191.48	171.39	290.49	259.41	596.91	153.72	246.64	278.88	303.50		
ACENAPHTHYLENE		1.68	0.94	ND, <0.05	0.87	ND, <0.11	12.68	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
ACENAPHTHENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
FLUORENE		9.48	15.70	13.30	24.40	33.67	48.50	9.04	15.27	11.48	20.87		
PHENANTHRENE		24.43	39.55	37.35	68.56	108.18	161.17	58.78	101.00	108.27	125.20		
ANTHRACENE		1.52	2.57	2.00	3.25	7.29	11.34	4.07	6.58	10.66	12.33		
FLUORANTHENE		2.04	2.35	2.99	5.72	8.11	7.98	3.07	4.35	5.09	ND, <0.38		
PYRENE		2.17	3.23	2.63	3.57	7.34	5.45	ND, <0.18	1.64	ND, <0.33	ND, <0.38		
BENZO(A)ANTHRACENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
CHRYSENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
BENZO(B)FLUORANTHENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
BENZO(K)FLUORANTHENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
BENZO(E)PYRENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
BENZO(A)PYRENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
PERYLÈNE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
INDENO(123-CD)PYRENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
DIBENZ(AH)ANTHRACENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		
BENZO(GHI)PERYLENE		ND, <0.04	ND, <0.06	ND, <0.05	ND, <0.06	ND, <0.11	ND, <0.15	ND, <0.18	ND, <0.23	ND, <0.33	ND, <0.38		

APPENDIX I-4: LOCOMOTIVE BN9754 CARB Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch				
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00				
			PART	ICULATE	FRACTIOI	N								
NAPHTHALENE	0.95	3.48	2.12	4.08	8.10	3.89	10.52	185.31	27.11	18.53				
2-METHYLNAPHTHALENE	0.56	1.55	1.54	2.25	3.02	1.95	5.79	11.94	11.79	9.55				
ACENAPHTHYLENE	ND, <0.03	ND, <0.05	ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
ACENAPHTHENE	0.15	0.58	0.46	0.58	1.13	0.52	1.73	2.90	3.66	3.28				
FLUORENE	TRACE	0.19	0.18	0.20	0.36	TRACE	ND, <0.15	0.89	1.36	1.57				
PHENANTHRENE	0.45	1.09	1.17	1.78	3.42	3.50	6.09	13.51	13.69	14.40				
ANTHRACENE	ND, <0.03	ND, <0.05	TRACE	TRACE	TRACE	TRACE	TRACE	1.34	TRACE	TRACE				
FLUORANTHENE	0.37	0.65	1.01	1.66	2.66	2.72	5.34	7.26	6.64	9.4				
PYRENE	0.68	1.39	2.47	4.38	6.75	7.78	12.02	23.44	23.05	21.38				
BENZO(A)ANTHRACENE	0.14	0.19	0.41	0.55	0.86	0.78	0.83	1.56	1.90	1.85				
CHRYSÈŃE	0.23	0.42	0.67	0.96	1.80	1.82	2.40	4.13	4.61	4.42				
BENZO(B)FLUORANTHENE	0.15	0.19	0.37	0.47	0.99	0.97	1.20	1.56	1.63	1.85				
BENZO(K)FLUORANTHENE	0.15	0.19	0.32	0.41	0.45	0.52	0.53	TRACE	1.08	TRACE				
BENZO(E)PYRENE	0.11	TRACE	0.28	0.41	1.22	0.78	0.90	1.34	1.49	1.57				
BENZO(A)PYRENE	0.18	0.23	0.37	0.41	0.54	0.45	0.60	0.78	1.22	1.14				
PERYLÈNE	ND. <0.03	ND. <0.05	ND. <0.04	ND, <0.06	ND. <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
INDENO(123-CD)PYRENE	0.12	0.16		TRACE	TRACE	TRACE	TRACE	TRÁCE	ND, <0.27	ND, <0.29				
DIBENZ(AH)ANTHRACENE	ND, < 0.03	ND, <0.05	ND, <0.04	ND, <0.06	ND, <0.09	TRACE		TRACE	TRACE	ND, <0.29				
BENZO(GHÍ)PERYLENE	0.16	0.26	0.30	0.41	0.59	0.71	0.83	1.45	1.22	1.43				
			V	APOR FRA	ACTION									
NAPHTHALENE	6.80	20.87	24.75	ND, <0.06	ND, <0.09	ND, <0.13	593.70	ND, <0.22	ND, <0.27	ND, <0.29				
2-METHYLNAPHTHALENE	95.16	125.23	95.45	151.67	202.56	265.88	345.70	435.38	732.07	727.07				
ACENAPHTHYLENE	8.43	8.81	12.37				18.79	23.44	28.47	24.24				
ACENAPHTHENE	0.82	0.70	1.24	0.88	0.90	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
FLUORENE	7.37	11.87	8.52	9.68			24.95	22.55	38.23	43.0				
PHENANTHRENE	17.13	17.62	20.50	25.08	38.71	37.61	64.63	66.98	116.59	136.80				
ANTHRACENE	1.90	2.16	2.30	3.21	4.50	4.47	6.69	8.04	12.34	12.69				
FLUORANTHENE	1.32	1.62	1.77	2.71	4.01	3.89	5.11	ND, <0.22	8.41	8.70				
PYRENE	2.04	2.55	2.83	3.79	5.85	5.58	7.06	5.81	11.66	12.26				
BENZO(A)ANTHRACENE	ND, <0.03	ND, <0.05	ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
CHRYSÈŃE			ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
BENZO(B)FLUORANTHENE	ND, <0.03	ND, <0.05	ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
BENZO(K)FLUORANTHENE			ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
BENZO(E)PYRENE			ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
BENZO(A)PYRENE	,	,	ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
PERYLENE	ND, <0.03		ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
INDENO(123-CD)PYRENE			ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
DIBENZ(AH)ANTHRACENE			ND, <0.04	ND, <0.06	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				
BENZO(GHI)PERYLENE	,	ND, <0.05	,	,	ND, <0.09	ND, <0.13	ND, <0.15	ND, <0.22	ND, <0.27	ND, <0.29				

APPENDIX I-5: LOCOMOTIVE BN9754 On-Highway Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch				
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00				
			PART	ICULATE	FRACTION	٧								
NAPHTHALENE	1.07	1.19	0.99	2.33	6.18	7.54	4.75	10.87	8.67	9.87				
2-METHYLNAPHTHALENE	0.67	0.74	0.63	0.85	1.75	4.59	2.95	8.09	5.06	5.92				
ACENAPHTHYLENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
ACENAPHTHENE	0.28	0.42	0.22		1.03		1.43	2.17	1.30					
FLUORENE	TRACE	TRACE	TRACE	0.21	0.41	0.55	ND, <0.19	1.21	1.01	TRACE				
PHENANTHRENE	0.75	1.25	1.23	-	5.20		12.45	24.27	29.05					
ANTHRACENE	TRACE	ND, <0.06	TRACE	TRACE	TRACE	TRACE	TRACE	1.69	1.59	TRACE				
FLUORANTHENE	0.48	0.86	1.17		2.89		5.89	9.66	14.45	-				
PYRENE	1.12	2.62	3.76		13.39	-	27.57	42.25						
BENZO(A)ANTHRACENE	0.18	0.21	0.36		1.55	_				-				
CHRYSENE	0.34	0.51	0.47	1.50	2.68			6.76		6.09				
BENZO(B)FLUORANTHENE	0.20	0.24	0.45		1.13			1.33						
BENZO(K)FLUORANTHENE	0.21	0.21	0.30	0.44	TRACE	0.48	TRACE	0.85	1.01	1.15				
BENZO(E)PYRENE		TRACE	0.38	0.44	1.91	1.37	0.76	1.33		1.64				
BENZO(A)PYRENE	0.23	0.30	0.44	0.47	0.88	0.48	TRACE	0.85	1.01	TRACE				
PERYLENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
INDENO(123-CD)PYRENE	0.18	TRACE	ND, <0.04	0.26	TRACE	TRACE	ND, <0.19	ND, <0.24	TRACE	1.48				
DIBENZ(AH)ANTHRACENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	TRACE	ND, <0.33				
BENZO(GHI)PERYLENE	0.25	0.27	0.34	0.44	0.62	0.89	1.33	1.69	2.17	1.81				
			V	APOR FRA	CTION									
NAPHTHALENE	44.46	74.46	27.69	90.51	118.49	ND, <0.14	ND, <0.19	60.36	28.90	ND, <0.33				
2-METHYLNAPHTHALENE	167.12	294.88	215.57	359.45	870.67	609.72	827.12	1074.43	997.19	1118.57				
ACENAPHTHYLENE	9.51	13.40	11.27	13.96	22.67	19.87	23.77	36.22	39.02	32.90				
ACENAPHTHENE	2.76	4.77	4.15	8.79	17.00	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
FLUORENE	13.83	23.29	21.79	36.26	61.93	56.31	46.77	59.40	85.56	77.64				
PHENANTHRENE	33.12	52.42	50.63	94.65	167.95	147.98	148.31	212.47	268.81	256.61				
ANTHRACENE	2.76	3.87	3.96	6.21	10.82	9.59	10.46	15.69	18.79	18.09				
FLUORANTHENE	1.69	1.94	2.77	4.40	7.21	6.17	5.04	6.76	8.38	9.05				
PYRENE	2.91	3.87	4.94	9.57	17.00	13.70	10.46	13.28	17.34	19.74				
BENZO(A)ANTHRACENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
CHRYSENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
BENZO(B)FLUORANTHENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
BENZO(K)FLUORANTHENE		ND, <0.06			ND, <0.10	ND, <0.14		ND, <0.24	ND, <0.29	ND, <0.33				
BENZO(E)PYRENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
BENZO(A)PYRENE			ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				
PERYLENE			ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14		ND, <0.24	ND, <0.29	ND, <0.33				
INDENO(123-CD)PYRENE					ND, <0.10	ND, <0.14		ND, <0.24	ND, <0.29	ND, <0.33				
DIBENZ(AH)ANTHRACENE	,	,	,	,	ND, <0.10	ND, <0.14	*	ND, <0.24	ND, <0.29	ND, <0.33				
BENZO(GHI)PERYLENE	ND, <0.03	ND, <0.06	ND, <0.04	ND, <0.05	ND, <0.10	ND, <0.14	ND, <0.19	ND, <0.24	ND, <0.29	ND, <0.33				

APPENDIX I-6: LOCOMOTIVE BN9754 **High-Sulfur, Nonroad Diesel**

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch				
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00				
			PAR	TICULATE	FRACTIO	N								
NAPHTHALENE	0.92			ND, <0.06		ND, <0.13		ND, <0.23	14.88	24.84				
2-METHYLNAPHTHALENE	0.22		0.85		ND, <0.10	1.89	1.05	ND, <0.23	5.12					
ACENAPHTHYLENE		ND, <0.06				ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.00				
ACENAPHTHENE	ND, <0.04	0.26	0.24		ND, <0.10		TRACE	TRACE	1.49	1.95				
FLUORENE	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	ND, <0.19	TRACE	TRACE	0.89				
PHENANTHRENE	0.57	1.26	1.42	2.31	4.55		9.63			17.92				
ANTHRACENE	ND, <0.04	,	TRACE	TRACE	TRACE	TRACE	0.67	1.15		0.71				
FLUORANTHENE	0.57		1.48	2.41	4.05		9.53			7.81				
PYRENE	0.90		2.37	4.01	10.49		15.25			24.84				
BENZO(A)ANTHRACENE	0.15		0.40				1.43			2.66				
CHRYSENE	0.41	0.64	1.11	1.97			4.58			7.10				
BENZO(B)FLUORANTHENE	0.26		0.45	0.77			1.43			2.13				
BENZO(K)FLUORANTHENE	0.18		0.24	0.28			0.67	1.03	_	0.71				
BENZO(E)PYRENE	TRACE	TRACE	0.20		0.75		0.86		1.82	1.95				
BENZO(A)PYRENE	,	,	TRACE	TRACE	0.35		0.67		TRACE	0.89				
PERYLENE		,	ND, <0.04		,	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.00				
INDENO(123-CD)PYRENE	TRACE	TRACE		TRACE	TRACE	TRACE	TRACE	ND, <0.23	ND, <0.33	ND, <0.00				
DIBENZ(AH)ANTHRACENE	,	ND, <0.06		,	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.00				
BENZO(GHI)PERYLENE	TRACE	TRACE	0.16		0.35	0.54	1.05	1.15	1.82	1.77				
				/APOR FF										
NAPHTHALENE	ND, <0.04		ND, <0.04			ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
2-METHYLNAPHTHALENE	73.81	219.04	164.03	218.94			285.99	389.83		603.24				
ACENAPHTHYLENE	8.49	12.27	11.46	12.03		20.21	22.88	37.84		33.71				
ACENAPHTHENE	1.66		3.56	4.63			ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
FLUORENE	9.45		16.25	22.57			30.70	42.65		50.03				
PHENANTHRENE	21.40		40.71	54.27			81.99	121.54		152.59				
ANTHRACENE	1.70		2.96	4.01	6.50		7.63			14.90				
FLUORANTHENE	1.33		2.37	2.99			5.24		ND, <0.33	9.23				
PYRENE	1.57		2.17	2.84			ND, <0.19	ND, <0.23	ND, <0.33	8.87				
BENZO(A)ANTHRACENE	ND, <0.04	,	ND, <0.04	,	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
CHRYSENE	ND, <0.04	ND, <0.06	ND, <0.04	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
BENZO(B)FLUORANTHENE	ND, <0.04	ND, <0.06	ND, <0.04	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
BENZO(K)FLUORANTHENE		ND, <0.06		ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
BENZO(E)PYRENE	,	ND, <0.06	,	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
BENZO(A)PYRENE		ND, <0.06	ND, <0.04	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
PERYLENE	ND, <0.04	ND, <0.06		ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
INDENO(123-CD)PYRENE		ND, <0.06		ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
DIBENZ(AH)ANTHRACENE	,	,	,	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				
BENZO(GHI)PERYLENE	ND, <0.04	ND, <0.06	ND, <0.04	ND, <0.06	ND, <0.10	ND, <0.13	ND, <0.19	ND, <0.23	ND, <0.33	ND, <0.35				

APPENDIX I-7: LOCOMOTIVE UP9715 CARB Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch			
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00			
				PARTICUI	LATE FRA	CTION								
NAPHTHALENE	0.69	0.12		0.54		4.52	2.99	8.77	5.39	11.85	13.09			
2-METHYLNAPHTHALENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	24.14	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
ACENAPHTHYLENE	TRACE	TRACE	TRACE	ND, <0.02	0.23	ND, <0.08	ND, <0.13	ND, <0.21	TRACE	TRACE	TRACE			
ACENAPHTHENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
FLUORENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
PHENANTHRENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	0.96	2.30	9.77	12.59	19.73	51.62			
ANTHRACENE	0.07	TRACE	TRACE	TRACE	0.13	0.35	0.54	1.86	2.53	3.49	6.66			
FLUORANTHENE	1.02	1.04	1.27	1.08		10.24	20.74	37.29	39.82	38.09	38.58			
PYRENE	2.03	2.08	2.42	2.16	3.39	17.33		48.68	51.88	52.37	47.35			
BENZO(A)ANTHRACENE	0.87	0.76	0.97	1.00	1.13	3.66	2.34	4.97	4.71	3.33	2.81			
CHRYSENE	1.24	1.20	1.50	1.91	2.58	7.49	4.95	9.22	9.17	7.62	-			
BENZO(B)FLUORANTHENE	0.53	0.62	0.68	1.58	2.42	5.12	2.61	5.18	4.83	3.49	2.63			
BENZO(K)FLUORANTHENE	1.02	0.75		1.25	1.94			4.25	3.50	2.54	2.63			
BENZO(E)PYRENE	0.54	0.69	0.75	1.16	3.23	3.94	1.87	3.42	3.38	2.54	2.10			
BENZO(A)PYRENE	0.87	0.77	0.98	0.48		2.44		4.14	3.74	2.70	2.81			
PERYLENE	0.11	0.06		ND, <0.02		ND, <0.08		TRACE	TRACE	ND, <0.32	ND, <0.35			
INDENO(123-CD)PYRENE	0.80	0.66	0.82	0.75		2.17		3.00	2.41	1.90	1.40			
DIBENZ(AH)ANTHRACENE	0.09		TRACE		TRACE		TRACE	TRACE	TRACE	ND, <0.32	ND, <0.35			
BENZO(GHI)PERYLENE	1.02	0.80	1.11	0.82		2.88	1.74	4.04	3.62	2.86	2.46			
				VAPO	R FRACTI	ON								
NAPHTHALENE	337.20	346.98	557.89	144.80	147.00	725.14	897.03	1181.53	1617.60	2286.34	1824.98			
2-METHYLNAPHTHALENE	84.82	93.31	146.06	97.11	107.72	420.48	426.43	608.37	865.51	503.61	398.67			
ACENAPHTHYLENE	35.11	29.83	66.06	18.57	23.11	103.69	52.99	72.71	76.25	65.38	52.96			
ACENAPHTHENE	2.68	2.07	4.71	1.15	0.94	3.09	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
FLUORENE	17.56	15.32	26.70	9.29	7.04	23.10	9.79	7.91	16.45	15.29	8.13			
PHENANTHRENE	41.93	38.94	63.05	27.21	26.97	101.29	85.04	90.22	129.22	135.05	84.35			
ANTHRACENE	5.20	4.36	6.86	2.87	2.18	10.05	5.69	4.66	6.64	ND, <0.32	ND, <0.35			
FLUORANTHENE	7.47	7.42	11.86	4.48	3.85	15.71	7.94	6.08	8.29	10.90	ND, <0.35			
PYRENE	9.67	9.84	13.03	6.00		15.01	7.43	4.25	6.15		ND, <0.35			
BENZO(A)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
CHRYSENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
BENZO(B)FLUORANTHENE			ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
BENZO(K)FLUORANTHENE	ND, <0.01		ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
BENZO(E)PYRENE	ND, <0.01		ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
BENZO(A)PYRENE	ND, <0.01		ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
PERYLENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
INDENO(123-CD)PYRENE	ND, <0.01	,	ND, <0.02	,	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
DIBENZ(AH)ANTHRACENE	,	,	ND, <0.02	,	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			
BENZO(GHI)PERYLENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.13	ND, <0.21	ND, <0.24	ND, <0.32	ND, <0.35			

APPENDIX I-8: LOCOMOTIVE UP9715 On-Highway Diesel

	PAH PRODUCTION , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch			
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00			
				PARTICUL	ATE FRA	CTION								
NAPHTHALENE	0.65	0.15				ND, <0.09	6.68	13.48	9.89	7.91	27.50			
2-METHYLNAPHTHALENE	TRACE	ND, <0.00	ND, <0.03	TRACE	ND, <0.03	ND, <0.09	ND, <0.12	TRACE	ND, <0.26	ND, <0.29	5.1			
ACENAPHTHYLENE	TRACE	TRACE	TRACE	TRACE	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	TRACE	TRACE	TRACE			
ACENAPHTHENE	ND, <0.01	ND, <0.00	ND, <0.03	ND, <0.01	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
FLUORENE	ND, <0.01	ND, <0.00	ND, <0.03	ND, <0.01	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
PHENANTHRENE	0.25	0.13	0.31	0.77	0.41	1.04	3.17	15.60	40.30	75.83	172.8			
ANTHRACENE	0.07	0.02	0.10	0.08	TRACE	0.39	0.70	2.16	4.37	7.23	13.3			
FLUORANTHENE	1.30	0.31	2.03	1.55	2.36	8.16	16.32	35.68	42.37	52.06	59.3			
PYRENE	3.85	1.10	6.61	5.60	6.90	20.18	33.22	60.54	76.80	98.34	122.8			
BENZO(A)ANTHRACENE	0.62	0.22	1.23	1.77	1.68	3.18	3.90	5.41	4.50	5.06	5.5			
CHRYSENE	0.85	0.35	1.91	2.87	3.37	6.44	7.58	9.95	8.87	10.85	11.6			
BENZO(B)FLUORANTHENE	0.33	0.16	0.89	1.77	2.19	3.48	3.85	4.87	3.44	3.76	4.0			
BENZO(K)FLUORANTHENE	0.47	0.17	1.05	1.62	1.68	2.92	3.15	4.22	2.78	2.89	3.2			
BENZO(E)PYRENE	0.28	0.11	0.62	1.25	1.62	4.21	2.62	3.24	3.97	2.89	4.0			
BENZO(A)PYRENE	0.47	0.14	0.90	0.88	0.50	2.15	2.27	4.22	3.71	3.18	3.8			
PERYLÈNE	0.06	0.02	0.11	0.06	TRACE	TRACE	TRACE	TRACE	ND, <0.26	TRACE	ND, <0.41			
INDENO(123-CD)PYRENE	0.41	0.14	0.81	1.03	0.91	1.55	1.87	2.92	1.32	1.45	1.4			
DIBENZ(AH)ANTHRACENE	0.05	0.01	TRACE	0.13	0.13	0.30	TRACE	TRACE	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(GHI)PERYLENE	0.48	0.16	1.00	1.03	0.94	2.23	2.39	3.78	2.38	2.31	2.6			
				VAPOR	RFRACTIO	ON								
NAPHTHALENE	370.36	146.55	1110.48	496.53	377.14	1262.38	3 2005.31	3287.35	3893.73	4252.60	5609.2			
2-METHYLNAPHTHALENE	207.66	71.66	389.70	225.94	162.82	544.05	528.82	851.21	1214.64	1543.51	1877.4			
ACENAPHTHYLENE	26.79	11.19	107.13	31.17	29.15	104.40	83.46	133.19	163.13	163.70	180.5			
ACENAPHTHENE	7.92	3.45	26.66	11.77	9.40	15.81	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
FLUORENE	18.78	9.28	49.76	30.32	23.84	52.22	34.17	46.09	64.40	83.35	111.8			
PHENANTHRENE	51.93	26.47	121.60	102.18	81.99	234.86	237.27	321.20	433.11	501.95	628.5			
ANTHRACENE	4.44	2.09	8.58	6.52	5.13	15.67	16.03	18.92	21.85	23.86	23.5			
FLUORANTHENE	4.24	2.56	11.80	14.21	9.07	23.98	30.81	33.37	34.25	25.84	20.1			
PYRENE	8.67	5.54	21.99	31.90	20.72	48.55	42.02	41.19	41.18	39.19	26.8			
BENZO(A)ANTHRACENE	ND, <0.01	ND, <0.00	ND, <0.03	ND, <0.01	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
CHRYSENE	ND, <0.01	ND, <0.00	ND, <0.03	ND, <0.01	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(B)FLUORANTHENE	ND, <0.01	ND, <0.00	ND, <0.03	ND, <0.01	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(K)FLUORANTHENE					ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(E)PYRENE	ND, <0.01				ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(A)PYRENE	ND, <0.01				ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
PERYLÈNE	ND, <0.01	ND, <0.00	ND, <0.03		ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
INDENO(123-CD)PYRENE	ND, <0.01	,	,	,	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
DIBENZ(AH)ANTHRACENE	ND, <0.01	,	,	,	ND, <0.03	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			
BENZO(GHÍ)PERYLENE	ND, <0.01	,	ND, <0.03	,	,	ND, <0.09	ND, <0.12	ND, <0.22	ND, <0.26	ND, <0.29	ND, <0.41			

APPENDIX I-9: LOCOMOTIVE UP9715 **High-Sulfur, Nonroad Diesel**

			PAF	PROD	UCTIC	N , mg	/hr				
COMPOUND	Notch										
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
				PARTICU	LATE FRA	ACTION					
NAPHTHALENE	0.67	1.07	0.91	1.50	2.46	4.25	13.36	23.08	44.81	14.95	15.89
2-METHYLNAPHTHALENE	ND, <0.02	ND, <0.01	ND, <0.02	TRACE	ND, <0.03	ND, <0.08	2.10	4.46	8.25	ND, <0.32	ND, <0.00
ACENAPHTHYLENE	TRACE	TRACE	TRACE	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	TRACE	0.75
ACENAPHTHENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.00
FLUORENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.00
PHENANTHRENE	3.75	1.27	1.00	0.81	ND, <0.03	ND, <0.08	0.38	9.28	5.60	18.06	53.37
ANTHRACENE	0.33	0.15	0.16	0.09	TRACE	TRACE	TRACE	TRACE	0.88	1.90	2.44
FLUORANTHENE	3.64	1.87	2.39	1.63	2.04	8.13	11.89	27.54	37.90	36.33	60.06
PYRENE	7.04	3.66	4.11		3.41	11.79			42.96		26.28
BENZO(A)ANTHRACENE	1.82	1.24	1.72	1.80	1.36	3.25	2.91	3.54	7.33	3.16	4.69
CHRYSENE	4.11	2.70	3.44	5.40	4.77	8.94	8.32		17.69		22.52
BENZO(B)FLUORANTHENE	0.95	0.83	1.15	1.63	2.04	3.58	2.97	4.52	7.58	4.26	8.26
BENZO(K)FLUORANTHENE	1.03	0.83	1.15	1.63	1.70	2.97	3.63	3.93	7.45	3.32	6.19
BENZO(E)PYRENE	0.78	0.83	0.94	0.94	1.12		2.14	3.44	5.18	3.00	6.94
BENZO(A)PYRENE	0.79	0.64	0.64	0.15	0.20		1.66		2.78	1.90	6.38
PERYLENE	0.08	TRACE	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.00
INDENO(123-CD)PYRENE	0.71	0.68	0.78		0.37	1.26		1.48	3.41	1.42	2.82
DIBENZ(AH)ANTHRACENE	0.10	0.08	0.09	0.08	TRACE	TRACE	TRACE	TRACE	TRACE	ND, <0.32	0.75
BENZO(GHI)PERYLENE	0.79	0.83	0.93	0.21	0.24	1.26	1.13	1.77	3.66	1.74	4.32
				VAPO	R FRACT	ION					
NAPHTHALENE	644.04	597.42	548.88	226.27	211.27	748.23	796.98	1417.11	3083.69	3539.10	3079.57
2-METHYLNAPHTHALENE	369.25	260.48	207.23	202.85	181.75	433.87	366.98	567.89	1601.23	2001.73	1383.99
ACENAPHTHYLENE	54.05	50.69	57.67	23.41	24.39	90.73	61.35	121.19	244.10	194.59	174.94
ACENAPHTHENE	15.02	10.36	10.50	6.16	5.08	7.66	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
FLUORENE	67.38	40.91	35.53	35.27	24.12	45.38	26.53	42.92	111.99	133.68	89.41
PHENANTHRENE	165.12	95.91	76.21	93.15	82.95	202.07	170.67	262.73	653.34	611.42	463.81
ANTHRACENE	15.31	9.92	8.37	8.87	7.07	18.09	12.78	17.21	39.80	18.16	ND, <0.38
FLUORANTHENE	8.93	9.19	7.92	7.70	5.77	17.83	13.59	18.56	49.11	32.96	16.64
PYRENE	9.74	9.89	7.85	8.83	6.32	15.89	10.17	11.90	30.45	17.53	ND, <0.38
BENZO(A)ANTHRACENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
CHRYSENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
BENZO(B)FLUORANTHENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
BENZO(K)FLUORANTHENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
BENZO(E)PYRENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
BENZO(A)PYRENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
PERYLENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
INDENO(123-CD)PYRENE	ND, <0.02	ND, <0.01	ND, <0.02		ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
DIBENZ(AH)ANTHRACENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38
BENZO(GHI)PERYLENE	ND, <0.02	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.08	ND, <0.12	ND, <0.20	ND, <0.25	ND, <0.32	ND, <0.38

APPENDIX I-10: LOCOMOTIVE UP9724 CARB Diesel

			PAH	PROD	UCTIO	N , mg	/hr	-	-		
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
				PARTICUI	ATE FRA	CTION					
NAPHTHALENE	2.58	1.04	4.92	3.63	7.04	5.18	9.38	ND, <0.20	44.43	60.81	81.40
2-METHYLNAPHTHALENE	1.56	0.70	2.55	1.92	3.37	2.59	4.51	ND, <0.20	17.42	25.10	39.1
ACENAPHTHYLENE	0.07	0.06	TRACE	TRACE	TRACE	ND, <0.10	TRACE	ND, <0.20	TRACE	TRACE	TRACE
ACENAPHTHENE	0.22	0.06	0.44	0.37	0.58	0.48	0.83	ND, <0.20	3.68	4.99	9.3
FLUORENE	0.12	0.06	0.12	0.11	0.16	ND, <0.10	TRACE	ND, <0.20	0.89	1.29	1.8
PHENANTHRENE	2.42	1.72	1.98	1.89	2.94	3.17	7.24	3.65	11.39	19.63	32.3
ANTHRACENE	0.29	0.22	0.20	0.12	0.29	TRACE	0.65	TRACE	1.00	1.77	3.1
FLUORANTHENE	3.04	3.64	3.64	8.90	5.62	8.64	26.71	21.30	29.03	37.00	65.8
PYRENE	4.81	3.97	5.72	13.36	8.88	15.36	40.95	32.45	45.77	57.92	89.8
BENZO(A)ANTHRACENE	1.96	2.11	1.82	1.51	4.71	2.54	4.87	3.96	4.91	3.54	6.7
CHRYSENE	2.66	2.75	2.60	5.16	3.99	4.80	8.90	7.61	8.93	7.24	12.9
BENZO(B)FLUORANTHENE	1.20	1.94	1.17	2.40	3.63	3.17	6.53	5.78	4.69	3.22	6.59
BENZO(K)FLUORANTHENE	1.58	1.21	1.56	2.94	15.59	2.83	3.86	4.06	4.69	3.06	5.59
BENZO(E)PYRENE	1.08	0.89	0.96	1.42	4.90	3.12	4.39	3.45	5.36	4.34	9.3
BENZO(A)PYRENE	1.71	1.30	1.30	1.07	1.81	1.58	2.97	3.75	3.91	3.06	7.9
PERYLENE	0.23	0.14	0.18	TRACE	TRACE	TRACE	TRACE	TRACE	TRACE	ND, <0.32	ND, <0.40
INDENO(123-CD)PYRENE	1.52	1.30	1.27	1.25	1.99	1.82	3.15	2.84	2.90	1.93	4.9
DIBENZ(AH)ANTHRACENE	0.21	0.12	0.10	0.16	0.24	TRACE	0.47	TRACE	TRACE	ND, <0.32	TRACE
BENZO(GHI)PERYLENE	1.77	1.46	1.56	4.81	3.08	2.54	4.57	3.96	4.02	2.90	6.79
				VAPO	R FRACTI	ON					
NAPHTHALENE	738.62	685.04	697.10	290.27	391.64	1084.66	1756.71	2494.92	848.44	1705.31	3114.5
2-METHYLNAPHTHALENE	562.52	532.81	647.68	167.40	177.69	470.34	700.31	892.49	200.95	1093.97	1557.2
ACENAPHTHYLENE	62.96	72.38	79.84	43.09	60.54	126.66	121.01	196.65	66.87	122.11	187.4
ACENAPHTHENE	7.69	6.75	6.81	3.69	5.15	5.95	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
FLUORENE	49.92	46.80	45.26	25.64	26.83	47.03	43.92	58.82	18.98	45.05	65.8
PHENANTHRENE	92.93	102.59	103.65	78.98	99.18	209.73	271.22	402.64	186.43	413.46	573.0
ANTHRACENE	11.26	13.58	12.19	10.48	12.46	25.29	29.50	43.31	19.76	39.74	51.3
FLUORANTHENE	8.97	13.09	11.91	9.94	15.34	30.52	34.18	56.39	25.23	50.84	55.1
PYRENE	12.70	17.04	14.37	15.18	18.22	33.84	34.13	56.29	24.00	50.68	52.9
BENZO(A)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
CHRYSENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
BENZO(B)FLUORANTHENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
BENZO(K)FLUORANTHENE		ND, <0.02	ND, <0.03		ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20		ND, <0.32	ND, <0.40
BENZO(E)PYRENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
BENZO(A)PYRENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
PERYLÈNE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
INDENO(123-CD)PYRENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
DIBENZ(AH)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.10	ND, <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40
BENZO(GHI)PERYLENE	ND, <0.01	ND, <0.02	ND, < 0.03	ND, <0.02	ND. < 0.04	ND, <0.10	ND. <0.12	ND, <0.20	ND, <0.22	ND, <0.32	ND, <0.40

APPENDIX I-11: LOCOMOTIVE UP9724 On-Highway Diesel

	PAH PRODUCTION , mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	
			F	PARTICUL	ATE FRA	CTION						
NAPHTHALENE	0.27	1.30	3.33	1.23	4.30	10.06	22.58	TRACE	43.76	62.77	79.29	
2-METHYLNAPHTHALENE	0.62	0.59	1.52	0.67	1.93	4.89	9.99	2.02	22.11	31.71	40.05	
ACENAPHTHYLENE	0.07	0.05	0.08	TRACE	TRACE	ND, <0.09	TRACE	ND, <0.22	TRACE	TRACE	TRACE	
ACENAPHTHENE	ND, <0.01	0.09	0.25	0.12	0.28	0.92	2.04	ND, <0.22	4.40	6.31	7.97	
FLUORENE	0.08	0.06	0.22	0.28	0.20	TRACE	0.45	ND, <0.22	1.02	1.46	1.84	
PHENANTHRENE	9.28	2.89	11.08	6.53	7.36	7.47	9.19	6.50	26.17	37.53	47.41	
ANTHRACENE	0.62	0.26	0.83	0.25	0.50	0.60	0.68	TRACE	1.92	2.75	3.47	
FLUORANTHENE	6.40	4.66	7.49	6.21	10.49	20.29	20.99	20.17	31.58	45.30	57.22	
PYRENE	15.81	9.31	18.99	12.41	21.65	38.28	37.45	39.22	56.39	80.89	102.18	
BENZO(A)ANTHRACENE	2.44	2.56	3.91	4.81	4.83	5.07	5.22	5.04	4.62	6.63	8.38	
CHRYSENE	3.16	3.57	5.25	7.76	8.33	9.69	10.21	8.74	9.02	12.94	16.35	
BENZO(B)FLUORANTHENE	1.08	2.17	2.01	9.31	7.00	7.38	4.48	3.59	3.16	4.53	5.72	
BENZO(K)FLUORANTHENE	1.08	1.86	5.47	0.06	5.16	5.07	5.05	4.48	3.50	5.02	6.33	
BENZO(E)PYRENE	1.01	1.47	1.68	4.50	9.83	6.00	5.45	3.92	3.83	5.50	6.95	
BENZO(A)PYRENE	1.58	1.47	2.23	1.63	3.33	3.04	3.23	3.70	3.50	5.02	6.33	
PERYLÈNE	0.21	0.17	0.11	0.14	TRACE	TRACE	0.40	TRACE	TRACE	TRACE	ND, <0.41	
INDENO(123-CD)PYRENE	1.44	1.63	2.46	2.33	2.83	3.32	3.46	3.25	2.71	3.88	4.90	
DIBENZ(AH)ANTHRACENE	0.16	0.16	0.25	0.28	0.52	0.37	0.51	TRACE	TRACE	TRACE	TRACE	
BENZO(GHI)PERYLENE	1.51	2.02	2.46	3.10	4.16	4.61	4.54	4.03	3.50	5.02	6.33	
				VAPOF	RFRACTIO	ON						
NAPHTHALENE	1269.01	1215.57	1414.47	687.35	842.84	2241.62	2587.14	3989.07	3676.85	4626.95	5435.81	
2-METHYLNAPHTHALENE	688.40	448.66	601.09	161.36	179.90	244.46	442.54	605.08	879.74		1185.25	
ACENAPHTHYLENE	172.02	193.58	211.60	108.14	140.57	260.09	246.17	340.53	387.87	410.76	477.98	
ACENAPHTHENE	54.71	46.68	51.55	30.36	31.88	36.62	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
FLUORENE	135.67	123.27	155.08	75.10	74.62	95.94	95.32	121.02	166.92	207.08	261.57	
PHENANTHRENE	306.62	292.41	309.15	230.18	244.36	399.89	520.26	747.39	1011.70	1240.86	1342.60	
ANTHRACENE	24.98	29.32	25.44	18.44	282.79	40.91	45.22	71.38	86.51	93.35	101.56	
FLUORANTHENE	16.64	27.29	19.17	31.16	30.25	41.33	57.64	94.80	93.16	96.42	97.27	
PYRENE	33.09	51.27	32.46	61.33	53.39	64.80	85.39	112.61	135.91	143.18	119.55	
BENZO(A)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.02		ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
CHRYSENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
BENZO(B)FLUORANTHENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
BENZO(K)FLUORANTHENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
BENZO(E)PYRENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
BENZO(A)PYRENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
PERYLÈNE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
INDENO(123-CD)PYRENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
DIBENZ(AH)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	
BENZO(GHI)PERYLENE	ND, <0.01	ND, <0.02	ND, <0.02	ND, <0.02	ND, <0.03	ND, <0.09	ND, <0.11	ND, <0.22	ND, <0.23	ND, <0.32	ND, <0.41	

APPENDIX I-12: LOCOMOTIVE UP9724 **High-Sulfur Nonroad Diesel**

	PAH PRODUCTION, mg/hr COMPOUND Notch												
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
				PARTICU	LATE FRA	ACTION							
NAPHTHALENE	1.38	1.56	3.71	2.14	5.45	9.63	7.24	14.09	ND, <0.26	18.54	66.79		
2-METHYLNAPHTHALENE	0.59	0.55	1.41	0.96	2.30	5.37	3.28	6.78	ND, <0.26	9.43	29.33		
ACENAPHTHYLENE	TRACE	TRACE	TRACE	TRACE	TRACE	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	TRACE	0.71		
ACENAPHTHENE	0.11	0.11	0.31	0.18	0.42	1.02	0.57	1.16	ND, <0.26	1.89	6.71		
FLUORENE	0.08	TRACE	0.16	0.07	TRACE	TRACE	TRACE	ND, <0.18	ND, <0.26	TRACE	1.59		
PHENANTHRENE	3.90	2.03	6.83	1.91	3.14	5.65	5.09	7.22	7.65	17.59	28.63		
ANTHRACENE	0.32	0.21	0.65	0.14	0.26	0.51	0.45	0.62	TRACE	1.41	1.24		
FLUORANTHENE	2.67	3.59	9.87	2.88	6.95	18.99	20.92	26.75	27.71	51.84	56.54		
PYRENE	3.95	5.28	13.34	4.24	8.96	26.40	28.27	35.67	31.67	50.27	53.01		
BENZO(A)ANTHRACENE	2.45	2.00	4.67	3.70	3.29	6.95	4.35	6.96	4.49	6.28	5.30		
CHRYSÈNE	3.45	2.64	7.34	3.42	7.68	14.36	11.87	16.05	11.61	20.42	17.67		
BENZO(B)FLUORANTHENE	1.22	1.58	2.67	1.62	5.12	6.48	7.92	6.24	4.35	7.85	6.01		
BENZO(K)FLUORANTHENE	1.39	1.27	3.47	4.78	2.38	6.95	3.85	5.35	3.83	5.50	4.59		
BENZO(E)PYRENE	0.95	1.02	1.87	1.44	2.93	7.87	4.47	5.97	3.96	6.91	8.83		
BENZO(A)PYRENE	1.17	1.06	2.13	0.11	0.22	1.02	0.62	1.16		1.41	2.12		
PERYLÈŃE	0.13	0.09	0.19	ND, <0.02	ND, < 0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.00		
INDENO(123-CD)PYRENE	1.39	1.48	2.40	0.89	1.37	3.61	2.49	3.92	2.90	4.24	4.24		
DIBENZ(AH)ANTHRACENE	0.17	0.15	0.23	0.15	0.26	0.51	0.45	0.62	TRACE	TRACE	0.35		
BENZO(GHÍ)PERYLENE	1.45	1.58	2.67	0.74	1.48	3.84	2.60	3.75	2.37	3.30	ND, <0.00		
				VAPC	R FRACT	ION							
NAPHTHALENE	648.40	818.69	968.69	311.83	266.95	1093.04	1221.38	1837.05	2981.94	2607.79	2844.65		
2-METHYLNAPHTHALENE	254.69	2065.72	224.16	70.30	179.18	46.32	67.85	89.18	184.72	298.48	409.16		
ACENAPHTHYLENE	144.24	178.71	185.98	88.67	70.19	242.65	183.15	253.17	321.81	336.03	358.31		
ACENAPHTHENE	27.33	30.74	33.54	14.55	9.76	18.71	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
FLUORENE	82.75	95.80	119.82	52.99	61.80	68.55	61.07	78.48	109.51	125.68	151.97		
PHENANTHRENE	181.67	228.62	262.45	141.22	195.09	313.55	382.81	541.30	708.54	686.51	812.48		
ANTHRACENE	21.00	27.19	30.38	15.11	21.52	31.82	34.89	53.24	65.58	43.52	61.76		
FLUORANTHENE	17.88	30.76	28.23	24.48	18.58	51.69	68.76	99.52	111.62	104.63	104.43		
PYRENE	19.49	32.76	28.09	26.18	20.20	46.55	51.17	78.92	82.47	69.91	75.01		
BENZO(A)ANTHRACENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, < 0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
CHRYSÈŃE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
BENZO(B)FLUORANTHENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
BENZO(K)FLUORANTHENE		ND, <0.02			ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
BENZO(E)PYRENE	ND, <0.01	ND, <0.02	ND, <0.03	ND, <0.02	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
BENZO(A)PYRENE	ND, <0.01			ND, <0.02	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
PERYLÈNE	ND, <0.01			ND, <0.02	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
INDENO(123-CD)PYRENE	ND, <0.01	,	,	,	ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
	ND, <0.01		ND, <0.03		ND, <0.04	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		
BENZO(GHI)PERYLENE	ND, <0.01	ND, <0.02	,	ND, <0.02	,	ND, <0.09	ND, <0.11	ND, <0.18	ND, <0.26	ND, <0.31	ND, <0.39		

APPENDIX J

Volatile Organic Fraction (VOF) of Particulate Data

-												
BNSF 969		RB diesel (EM-2663-E	-1	On-	Hwy Diese	I (EM-267	7_E\	High Sulfu	r Nonroa	d diesel (F	M-2664-E)
TEST	Total Part.,	%	VOF,	Unburned		%	VOF,	Unburned		%	VOF,	Unburned
NO.	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %
DB-2	2.592	67.1	1.740	81	2.504	51.8	1,297	71	2.831	61.6	1.744	72
Idle	1.355	57.5	0.779	65	3.125	20.3	0.634	56	1.290	58.6	0.756	53
Notch 1	0.317	63.5	0.201	77	0.276	58.5	0.161	84	0.243	57.4	0.139	67
Notch 2	0.259	64.4	0.167	94	0.228	61.1	0.139	96	0.228	54.7	0.125	83
Notch 3	0.282	66.9	0.189	99	0.221	60.1	0.133	97	0.293	59.8	0.175	90
Notch 4	0.270	54.2	0.146	89	0.239	49.4	0.118	96	0.300	78.0	0.234	88
Notch 5	0.271	43.4	0.118	86	0.261	45.7	0.119	95	0.327	43.3	0.142	88
Notch 6	0.291	31.9	0.093	78	0.350	31.9	0.111	92	0.396	30.9	0.122	89
Notch 7	0.287	51.1	0.147	82	0.300	32.3	0.097	100	0.404	30.9	0.125	90
Notch 8	0.481	59.4	0.286	87	0.493	56.5	0.279	96	0.587	53.8	0.125	94
		39.4	0.200	07	0.495	30.3	0.213	30	0.507	33.0	0.510	34
BNSF 975		RB diesel (EM-2663-F	=)	On-	Hwy Diese	el (EM-267	7-F)	High Sulfu	r, Nonroa	d diesel (E	M-2664-F)
TEST	Total Part.,	%	VOF,	Unburned		%	VOF,	Unburned		%	VOF,	Unburned
NO.	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %
DB-2	3.457	56.3	1.947	83	2.386	58.5	1.397	77	3.030	58.7	1.779	77
Idle	1.299	59.0	0.766	67	1.542	45.9	0.707	66	1.795	42.9	0.771	73
Notch 1	0.444	59.3	0.263	83	0.325	59.5	0.193	85	0.468	56.0	0.262	81
Notch 2	0.305	66.9	0.204	85	0.293	61.0	0.179	90	0.355	58.4	0.207	80
Notch 3	0.393	56.2	0.221	95	0.362	61.7	0.223	98	0.262	86.2	0.226	94
Notch 4	0.310	55.2	0.171	93	0.309	56.1	0.173	94	0.400	45.8	0.183	94
Notch 5	0.300	53.9	0.162	90	0.280	54.4	0.152	90	0.368	43.9	0.161	90
Notch 6	0.353	47.4	0.167	88	0.339	44.5	0.151	89	0.438	34.4	0.151	88
Notch 7	0.366	52.8	0.107	89	0.368	49.2	0.181	90	0.425	47.0	0.200	87
Notch 8	0.366	52.8 49.7	0.193	88	0.368	50.1	0.181	89	0.425	47.0	0.200	90
		49.7	0.100	- 66	0.392	50.1	0.197	09	0.432	47.5	0.207	90
BNSF 969		RB diesel (EM-2663-F	=)	On-	Hwy Diese	I (EM-267	7-F)	High Sulfu	r, Nonroad	d diesel (E	M-2664-F)
TEST	Total Part.,	%	VOF,	Unburned		%	VOF,	Unburned		%	VOF,	Unburned
NO.	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %	g/hp-hr	VOF	g/hp-hr	OIL, %
DB-2	1.933	66.6	1.288	62	2.418	54.3	1.312	60	2.337	39.2	0.915	47
Idle	0.980	58.6	0.574	48	1.087	56.5	0.614	46	1.399	59.6	0.834	70
Notch 1	0.205	68.4	0.140	65	0.243	66.7	0.162	65	0.208	58.0	0.121	60
Notch 2	0.211	67.1	0.141	77	0.249	62.2	0.155	77	0.240	51.5	0.124	68
Notch 3	0.211	68.5	0.141	89	0.249	68.1	0.192	92	0.240	54.4	0.124	80
	0.234						0.134		0.270			
Notch 4		39.9	0.098	100	0.261	51.2		93		30.2	0.106	83
Notch 5	0.244	36.5	0.089	81	0.258	37.1	0.096	87	0.339	22.6	0.077	73
Notch 6	0.202	59.2	0.120	76	0.231	54.8	0.127	84	0.295	37.2	0.110	79
Notch 7	0.215	67.5	0.145	85	0.242	65.8		92	0.262	52.8	0.138	79
	0.213						0.159				0 146	
Notch 8	0.213	69.5	0.148	80	0.244	60.4	0.139	87	0.297	49.0	0.146	83
			0.148	80	0.244		0.147	87		49.0		83
Notch 8 UP 9715 TEST	CAF	69.5	0.148 EM-2663-F VOF,	80) Unburned	0.244 On- Total Part	60.4 Hwy Diese	0.147	87 7-F) Unburned	0.297 High Sulfu Total Part	49.0 r, Nonroae	d diesel (E	83 M-2664-F) Unburned
Notch 8 UP 9715	CAF	69.5	0.148 EM-2663-F	80	0.244 On- Total Part. g/hp-hr	60.4 Hwy Diese	0.147	87 7-F)	0.297 High Sulfu	49.0	d diesel (E	83 M-2664-F)
Notch 8 UP 9715 TEST	CAF	69.5	0.148 EM-2663-F VOF,	80) Unburned	0.244 On- Total Part	60.4 Hwy Diese	0.147 el (EM-267) VOF,	87 7-F) Unburned	0.297 High Sulfu Total Part	49.0 r, Nonroae	d diesel (E	83 M-2664-F) Unburned
Notch 8 UP 9715 TEST NO.	CAF Total Part., g/hp-hr	69.5 RB diesel (% VOF	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467	80 Unburned OIL, %	0.244 On- Total Part g/hp-hr 1.088 1.770	60.4 Hwy Diese % VOF 24.4 20.6	0.147 el (EM-267) VOF, g/hp-hr	7-F) Unburned OIL, %	0.297 High Sulfu Total Part. g/hp-hr	49.0 r, Nonroae % VOF	d diesel (E VOF, g/hp-hr	83 M-2664-F) Unburned OIL, % 37 19
VP 9715 TEST NO. DB-2	CAF Total Part., g/hp-hr 1.769	69.5 RB diesel (0.148 EM-2663-F VOF, g/hp-hr 0.424	80 F) Unburned OIL, % 53	0.244 On- Total Part. g/hp-hr 1.088	60.4 Hwy Diese % VOF 24.4	0.147 VOF, g/hp-hr 0.265	7-F) Unburned OIL, % 32	0.297 High Sulfu Total Part. g/hp-hr 1.828	49.0 r, Nonroac % VOF 36.1	d diesel (E VOF, g/hp-hr 0.660	83 M-2664-F) Unburned OIL, % 37
VP 9715 TEST NO. DB-2 Low Idle Idle Notch 1	CAF Total Part., g/hp-hr 1.769 2.256	69.5 RB diesel (% VOF 24.0 20.7	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467	80 Unburned OIL, % 53 35	0.244 On- Total Part g/hp-hr 1.088 1.770	60.4 Hwy Diese % VOF 24.4 20.6	0.147 VOF, g/hp-hr 0.265 0.364	7-F) Unburned OIL, % 32 25	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068	49.0 r, Nonroac % VOF 36.1 30.1	d diesel (E VOF, g/hp-hr 0.660 1.224	83 M-2664-F) Unburned OIL, % 37 19
VP 9715 TEST NO. DB-2 Low Idle Idle	CAF Total Part., g/hp-hr 1.769 2.256 1.471	69.5 RB diesel (% VOF 24.0 20.7 21.9	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322	80 Unburned OIL, % 53 35 27	0.244 On- Total Part, g/hp-hr 1.088 1.770 2.120	60.4 Hwy Diese % VOF 24.4 20.6 22.0	0.147 VOF, g/hp-hr 0.265 0.364 0.467	7-F) Unburned OIL, % 32 25 23	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680	49.0 r, Nonroae % VOF 36.1 30.1 26.4	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709	83 M-2664-F) Unburned OIL, % 37 19 22
VP 9715 TEST NO. DB-2 Low Idle Idle Notch 1	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151	69.5 RB diesel (0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082	80 Unburned OIL, % 53 35 27 64	0.244 On- Total Part. g/hp-hr 1.088 1.770 2.120 0.182	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096	7-F) Unburned OIL, % 32 25 23 66	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680 0.260	7, Nonroad % VOF 36.1 30.1 26.4 50.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131	83 M-2664-F) Unburned OIL, % 37 19 22 56
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196	69.5 RB diesel (0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056	80 Unburned OIL, % 53 35 27 64	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055	7-F) Unburned OIL, % 32 25 23 66 73	0.297 High Sulfu Total Part, g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283	49.0 r, Nonroac % VOF 36.1 26.4 50.5 30.3 21.8	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 62
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.050 0.019	80 Unburned OIL, % 53 35 27 64 69 64 55	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051	7-F) Unburned OIL, % 32 25 23 66 73 67	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034	83 8M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031	80 Unburned OIL, % 53 35 27 64 69 64 55 64	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 21.2	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024	7-F) Unburned OlL, % 32 25 23 66 73 67 64	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241	7, Nonroad % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70 73
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029	5) Unburned OlL, % 53 35 27 64 69 64 55 64 69	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 21.2 20.1	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217	49.0 r, Nonroae % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042	83 8M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70 73 79
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.050 0.056 0.019 0.031 0.029 0.023	5) Unburned OIL, % 53 35 27 64 69 64 55 64 69 64	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.1 35.1 15.2 21.2 20.1 20.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.055 0.051 0.024 0.032	7-F) Unburned OIL, % 32 25 36 66 73 67 64 53 55	0.297 High Sulfu Total Part, g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203	49.0 r, Nonroad % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042 0.035	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70 73 79 68
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 4 Notch 6 Notch 7 Notch 8	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029	5) Unburned OlL, % 53 35 27 64 69 64 55 64 69	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 21.2 20.1	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53	0.297 High Sulfu Total Part. g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217	49.0 r, Nonroae % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042	83 Unburned OIL, % 37 19 22 56 63 62 70 73 79
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2	0.148 EM-2663-F VOF, g/hp-h 0.424 0.467 0.322 0.050 0.056 0.019 0.021 0.022 EM-2663-F	80 Unburned OlL, % 53 35 27 64 69 64 69 64 55 64 69	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.1 35.1 15.2 21.2 20.1 20.4	0.147 N (EM-267: VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.024 0.023	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53 55 44	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042 0.035 0.026	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 63 62 70 73 73 75 68 51
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 4 Notch 6 Notch 7 Notch 8	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029 0.023	80 Unburned OlL, % 53 35 27 64 69 64 69 64 55 64 69	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 21.2 20.1 20.4 19.5	0.147 NOF, g/hp-hr 0.265 0.364 0.467 0.095 0.051 0.024 0.032 0.024 0.032 0.022	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53 55 44	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042 0.035 0.026	83 M-2664-F) Unburned OIL, % 37 19 222 56 63 62 70 73 73 98 68 51
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (0.148 EM-2663-F VOF, g/hp-h 0.424 0.467 0.322 0.050 0.056 0.019 0.021 0.022 EM-2663-F	80 Unburned OlL, % 53 35 27 64 69 64 69 64 55 64 69	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 21.2 20.1 20.4 19.5 Hwy Diese	0.147 N (EM-267: VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.024 0.023	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53 55 44	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226	49.0 r, Nonroad % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042 0.035 0.026	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70 73 79 68 51
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (%	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr	5) Unburned OIL, % 53 35 27 64 69 64 55 64 55 04 01 Unburned OIL, %	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g/hp-hr	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 21.1 20.4 19.5 Hwy Diese % VOF	0.147 N (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.022 0.023	7-F) Unburned OlL, % 32 25 23 66 73 67 64 64 53 55 44 7-F) Unburned OlL, %	0.297 High Sulfur Total Part (g/hp-hr 1.828 4.068 2.680 0.260 0.260 0.241 0.217 0.203 0.226 High Sulfur Total Part (g/hp-hr	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.034 0.042 0.035 0.026 0.026	83 M-2664-F) Unburned OIL, % 37 19 22 56 63 62 70 73 79 68 51 M-2664-F) Unburned
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 6 Notch 6 Notch 7 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029 0.023 0.024	5) Unburned OlL, % 53 55 52 64 55 64 69 64 55 Unburned OlL, %	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435	60.4 Hwy Diese % VOF 24.4 20.6 52.9 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023	7-F) Unburned OIL, % 32 25 23 66 73 67 64 53 55 44 7-F) Unburned OIL, %	0.297 High Sulfu Total Part (g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.2412 0.2217 0.203 0.226 High Sulfu Total Part (g/hp-hr 3.855	49.0 r, Nonroac % VOF 36.1 30.1 20.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.035 0.026 0.026	83 M-2664-F) Unburned OlL, % 37 19 22 56 63 37 79 68 51
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095	5) Unburned OlL, % 53 35 64 69 64 55 Unburned OlL, % 64 69 64 55	0.244 On- Total Part g//p-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g//p-hr 3.435 5.245	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 21.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2	0.147 N (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.024 0.032 0.022 0.023 N (EM-267' VOF, g/hp-hr 2.577 4.152	7-F) Unburned OIL, %	0.297 High Sulfur Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.203 0.226 High Sulfur Total Part g/hp-hr 3.855 3.617	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 vof vof 41.2 30.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588	83 M-2664-F) Unburned OlL, % 37 19 22 56 62 70 73 79 68 51 M-2664-F) Unburned OlL, % 48 344
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.050 0.056 0.019 0.031 0.029 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095	80 Unburned OlL, % 53 355 27 64 55 64 55 64 69 644 69 644 55 55 Unburned OlL, % 46 28 42	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435 5.245	60.4 Hwy Diesse % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.023 0.024 0.023	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 55 Unburned OlL, % 80 62 38	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 High Sulfu Total Part g/hp-hr 3.855 3.617	49.0 r, Nonroae % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroae % VOF 41.2 30.3 30.3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.042 0.035 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095	83 M-2664-F) Oll., % Oll., % 37 19 22 56 63 62 70 73 79 68 51 M-2664-F) Unburned Oll., % 48 34 38
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 6 Notch 6 Notch 7 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Idle Notch 1	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095	80 Unburned OlL, % 53 55 527 64 55 64 69 64 55 Unburned OlL, %	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435 5.245 3.251	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023	7-F) Unburned OIL, % 32 25 23 66 73 67 64 53 55 44 7-F) Unburned OIL, 80 62 388 27	0.297 High Sulfu Total Part (g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part (g/hp-hr 3.855 3.617 3.471	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 30.3 29.1 49.6	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.035 0.026 0.026 VOF, g/hp-hr 1.588 1.095 1.010	83 M-2664-F) Unburned OlL, % 37 19 22 56 63 37 79 68 51 Unburned OlL, % 48 34 48 34 38 38
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 1 Notch 1 Notch 2	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.019 0.021 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154	5) Unburned OlL, % 53 35 64 69 64 55 64 65 01L, % 46 68 42 68 74	0.244 On- Total Part g//p-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g//p-hr 3.435 5.245 3.251 0.550 0.418	60.4 Hwy Diese WOF 24.4 20.6 22.0 52.9 52.1 15.2 21.2 20.1 20.4 19.5 Hwy Diese WOF 75.0 79.2 28.9 15.4 31.6	0.147 N (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.022 0.023 NOF, g/hp-hr 2.577 VOF, g/hp-hr 2.577 4.152 0.939 0.085	7-F) Unburned OIL, %	0.297 High Sulfur Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.203 0.226 High Sulfur Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 vof VOF 41.2 30.3 29.1 49.6 36.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 VOF, g/hp-hr 1.588 1.095 1.091 0.175	83 M-2664-F) Unburned OlL, % 37 19 22 56 63 62 70 73 68 51 M-2664-F) Unburned OlL, % 48 34 38 64 77
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 8 Notch 8 Notch 9 Notch 9 Notch 1 Notch 2 Notch 1 Notch 1 Notch 1 Notch 2 Notch 3	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154	80 Unburned OlL, % 53 27 64 69 64 55 64 69 64 69 64 69 64 68 74 66	0.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 Total Part (g/hp-hr 3.435 5.245 5.245 0.2411 0.550 0.418	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023	7-F) Unburned OlL, % 32 25 23 66 67 64 53 55 Unburned OlL, % 64 53 27 66 62 38 27 65 65	0.297 High Sulfu Total Part: (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part: (g/hp-hr 3.855 3.617 3.471 0.353 0.323	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.042 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.177	83 M-2664-F) Unburned OlL, % 37 19 22 56 63 3 79 68 51 M-2664-F) Unburned OlL, % 48 34 38 64 77 53
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Idle Notch 1 Notch 1 Notch 5 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.232	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074	5) Unburned OlL, %	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 Wyor 75.0 79.2 28.9 15.4 31.6 30.7 16.6	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 M (EM-267' VOF, g/hp-hr 4.152 0.985 0.132 0.085	7-F) Unburned OIL, % 32 25 25 66 73 67 64 53 55 44 7-F) Unburned OIL, % 62 80 62 38 27 65 55	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117	83 M-2664-F) Unburned OlL, % 19 22 56 63 79 68 51 Unburned OlL, % 48 34 34 34 35 36 37 79 37 48 37 48 34 34 35 36 37 37 37 37 48 48 48 48 48 48 48 48 48 48
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 8 Notch 1 Notch 1 Notch 8 Notch 1 Notch 1 Notch 1 Notch 1 Notch 1 Notch 1 Notch 3 Notch 1 Notch 3 Notch 4 Notch 5 Notch 3 Notch 4 Notch 5 Notch 3 Notch 4 Notch 5	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.222 0.166	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.056 0.031 0.029 0.023 0.024 EM-2663-F VOF, 0.999 1.095 1.365 0.214 0.154 0.074 0.030	80 Unburned OlL, % 53 355 27 64 69 644 55 55 64 OlL, % Oll, % 69 644 55 55 64 65 69 644 65 55 66 68 74 66 68 74 66 52	0.244 On- Total Partr (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Partr (g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.141	Hwy Diess % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 20.4 19.5 WOF 75.0 79.2 28.9 15.4 30.7 16.4 30.7	0.147 In (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.024 0.022 0.023 In (EM-267' VOF, g/hp-hr 2.577 4.152 0.939 0.085 0.132 0.074 0.033	7-F) Unburned OlL, % 32 25 23 66 73 67 64 44 53 555 44 7-F) Unburned OlL, % 62 38 27 65 65 55	0.297 High Sufur Total Part (g/hp-hr 1.828 4.068 2.680 0.260 0.221 0.283 0.260 0.241 0.217 0.203 0.226 High Sufur (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296	49.0 r, Nonroac % % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 vOF 41.2 30.3 29.1 49.6 36.1 10.5 11.0 5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117 0.067	83 8M-2664-F) Oll., % Oll., % 37 19 22 56 63 37 79 68 51 Unburned Oll., % 48 34 38 64 77 53 45 45
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Idle Notch 1 Notch 1 Notch 5 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.232	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074	5) Unburned OlL, %	0.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 Wyor 75.0 79.2 28.9 15.4 31.6 30.7 16.6	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 M (EM-267' VOF, g/hp-hr 4.152 0.985 0.132 0.085	7-F) Unburned OIL, % 32 25 25 66 73 67 64 53 55 44 7-F) Unburned OIL, % 62 80 62 38 27 65 55	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117	83 M-2664-F) Unburned OlL, % 19 22 56 63 79 68 51 Unburned OlL, % 48 34 34 34 35 36 37 79 37 48 37 48 34 34 35 36 37 37 37 37 48 48 48 48 48 48 48 48 48 48
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 8 Notch 1 Notch 1 Notch 8 Notch 1 Notch 1 Notch 1 Notch 1 Notch 1 Notch 1 Notch 3 Notch 1 Notch 3 Notch 4 Notch 5 Notch 3 Notch 4 Notch 5 Notch 3 Notch 4 Notch 5	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.222 0.166	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.056 0.031 0.029 0.023 0.024 EM-2663-F VOF, 0.999 1.095 1.365 0.214 0.154 0.074 0.030	80 Unburned OlL, % 53 355 27 64 69 644 55 55 64 OlL, % Oll, % 69 644 55 55 64 65 69 644 65 55 66 68 74 66 68 74 66 52	0.244 On- Total Partr (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Partr (g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.141	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.085 0.085 0.085 0.085 0.095 0.093 0.094 0.033 0.034 0.033	7-F) Unburned OlL, % 32 25 23 66 73 67 64 44 53 555 44 7-F) Unburned OlL, % 62 38 27 65 65 55	0.297 High Sufur Total Part (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sufur (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296	49.0 r, Nonroac % % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 vOF 41.2 30.3 29.1 49.6 36.1 10.5 11.0 5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117 0.067	83 8M-2664-F) Oll., % Oll., % 37 19 22 56 63 37 79 68 51 Unburned Oll., % 48 34 38 64 77 53 45 45
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 6 Notch 7 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 3 Notch 4 Notch 6 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.037	80 Unburned OlL, % OlL, % 64 69 64 55 64 69 64 55 Unburned OlL, % 46 28 42 68 74 666 52 54 47	0.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 Total Part (g/hp-hr 3.435 5.245 3.435 5.245 0.418 0.241 0.196 0.141 0.196	Hwy Diess % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 20.4 19.5 WOF 75.0 79.2 28.9 15.4 30.7 16.4 30.7	0.147 In (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.024 0.022 0.023 In (EM-267' VOF, g/hp-hr 2.577 4.152 0.939 0.085 0.132 0.074 0.033	7-F) Unburned OlL, % 32 25 23 66 73 67 64 533 55 Unburned OlL, % 80 62 38 27 65 55 51	0.297 High Sulfut Total Part: (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.2412 0.2217 0.203 0.226 High Sulfut Total Part: (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.229	49.0 r, Nonroac % % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1 10.5 14.6 3	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.042 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117 0.017 0.031	83 M-2664-F) Unburned OlL, %
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 3 Notch 6 Notch 7 Notch 8 UP 9724 TEST DB-2 Low Idle Idle Idle Notch 1 Notch 5 Notch 5 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113 0.085 0.085	69.5 RB diesel (WOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (WOF 44.4 25.7 38.9 56.4 48.7 31.2 2.3 27.1 27.6 26.6	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.0550 0.056 0.019 0.023 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.037 0.031 0.023	5) Unburned OlL, % OlL, % 64 69 64 655 Unburned OlL, % 68 64 655 Unburned OlL, % 46 46 46 40 68	O.244 On- Total Part g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.141 0.106 0.092 0.087	60.4 Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 20.4 19.5 WOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 VOF, g/hp-hr 2.577 4.152 0.939 0.085 0.032 0.034 0.032	7-F) Unburned OIL, %	0.297 High Sulfu g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323 0.324 0.299 0.195 0.206	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1 10.5 14.4 16.3 16.3 16.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.1175 0.117 0.067 0.033 0.033	83 M-2664-F) Unburned OlL, % 37 19 22 56 62 70 73 79 68 51 Unburned OlL, % 48 48 44 77 53 45 47 42 40 37
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 6 Notch 7 Notch 8 UP 9724 TEST SO DB-2 Low Idle Idle Notch 1 Notch 1 Notch 5 Notch 8 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113 0.085 0.085	69.5 RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 48.7 31.2 13.7 22.3 27.1	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.0550 0.056 0.019 0.023 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.037 0.031 0.023	5) Unburned OlL, % OlL, % 64 69 64 655 Unburned OlL, % 68 64 655 Unburned OlL, % 46 46 46 40 68	0.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.107 0.141 0.106 0.107 0.141 0.106 0.092 0.087	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 WVOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 VOF, g/hp-hr 2.577 4.152 0.939 0.085 0.032 0.034 0.032	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 55 Unburned OlL, % 64 53 35 55 51 52 43 39	0.297 High Sulfu Total Part g/hp-hr 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323 0.324 0.299 0.195	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 49.6 36.1 20.1 10.5 14.4 16.3 16.3 16.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.1175 0.117 0.067 0.033 0.033	83 M-2664-F) Unburned OIL, % 19 22 56 63 63 79 68 51 Unburned OIL, % 44 43 44 77 53 45 47 42 40 37
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST BO DB-2 Low Idle Idle Notch 1 Notch 1 Notch 6 Notch 7 Notch 8 UP 9734 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9733 TEST	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.316 0.236 0.222 0.166 0.113 0.085 0.085	8B diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 8B diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3 27.1 27.6 26.6	0.148 EM-2663-F VOF, (hyp-hr 0.424 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, (g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.037 0.023 0.023	5) Unburned OlL, %	O.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part (g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.141 0.196 0.092 0.087	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 23.9 26.0 30.0 36.4 Hwy Diese %	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.0555 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.024 0.035 0.051 0.034 0.035 0.036 0.035 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036	7-F) Unburned OIL, %	0.297 High Sulfu Total Part (g/hp-hr 1.828 4.068 4.068 0.260 0.212 0.283 0.260 0.2412 0.221 0.226 High Sulfu Total Part (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.229 0.195 0.206 0.212	49.0 r, Nonroac % VOF 36.1 30.1 1.26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 3.9 11 49.6 36.1 10.5 14.4 16.3 16.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.035 0.035 0.026 0.026 0.026 0.026 0.036 1.588 1.095 1.010 0.175 0.117 0.031 0.033 0.033 0.035	83 M-2664-F) Unburned OlL, % 37 19 22 56 63 62 70 73 79 68 51 Unburned OlL, % 48 34 34 37 45 47 42 40 37
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 6 Notch 6 Notch 6 Notch 1 Notch 8 UP 9724 TEST NO. DB-2 Notch 1 Notch 1 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.113 0.085 0.085	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3 27.1 27.6 26.6 28.8 RB diesel (% VOF	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.019 0.031 0.029 0.023 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.074 0.030 0.031 0.023	5) Unburned OIL, % 666 440 40 Unburned OIL, % 660 522 544 660 660 660 660 660 660 660 660 660 6	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.191 0.196 0.092 0.087	### Biese ### Biese ### Wor ### 24.4 ### 20.6 ### 22.0 ### 52.9 ### 52.1 ### 20.4 ### 19.5 ### 1	0.147 In (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.023 0.024 0.022 0.023 0.024 0.032 0.024 0.032 0.024 0.032 0.024 0.032 0.024 0.032 0.051 0.044 0.032 0.051 0.05	7-F) Unburned Oll., % 32 25 23 66 73 67 64 44 53 555 44 7-F) Unburned Oll., % 62 38 27 65 51 52 43 39 7-F) Unburned Oll., %	0.297 High Sulfut Total Parti (g/hp-hr 1.828 4.068 2.680 0.260 0.260 0.241 0.217 0.203 0.226 High Sulfut 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.212 High Sulfut 0.217 0.203 0.226 High Sulfut 0.217 0.203 0.226 High Sulfut 0.217 0.353 0.3617 0.3617 0.353 0.324 0.296 0.212 High Sulfut Total Parti (g/hp-hr 0.353 0.324 0.296 0.212 High Sulfut Total Parti (g/hp-hr 1.7504	49.0 r, Nonroac % % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 * VOF 41.2 30.3 29.1 49.6 36.1 10.5 11.4 16.3 16.3 16.3 r, Nonroac %	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.035 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.033 0.032 0.033 0.032 0.035 0.035 0.036 0.05	M-2664-F) Wh-2664-F) Where the state of th
Notch 8 UP 9715 TEST NO. DB-2 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low idle idle Notch 1 Notch 6 Notch 6 Notch 7 NO. DB-2 Low idle idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 LOW idle idle Notch 1 Notch 2 Notch 3 Notch 4 Notch 5 Notch 5 Notch 5 Notch 6 Notch 7 Not	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113 0.085 0.085	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 27.6 26.6 RB diesel (% VOF RB diesel (% VOF 76.0	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 0.214 0.154 0.074 0.030 0.037 0.031 0.023	5) Unburned OlL, %	0.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 Total Part (g/hp-hr 1.793 0.182 0.105 0.182 0.105 0.182 0.	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.036 0.055 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.038	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 55 Unburned OlL, % 80 62 38 27 65 65 55 51 52 43 39 7-F) Unburned OlL, %	0.297 High Sulfu Total Part; g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part; g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.212 High Sulfu Total Part; g/hp-hr 1.696	49.0 r, Nonroad % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroad % VOF 41.2 30.3 29.1 10.5 11.6.3 16.5 r, Nonroad % VOF r, Nonroad % y y y y y y y y y y y y y y y y y y	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.034 0.042 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.175 0.117 0.031 0.033 0.032 0.034 0.035 d diesel (E VOF, g/hp-hr	**M-2664-F) Unburned OlL, % 37 19 22 56 63 62 70 73 79 68 51 **M-2664-F) Unburned OlL, % 48 34 47 77 42 40 37 **M-2664-F) Unburned OlL, % 48 48 47 47 42 40 37
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 7 Notch 1 Notch 1 Idle Notch 1 Notch 6 Notch 7 Notch 6 Notch 7 Notch 1 Notch 2 Notch 3 Notch 4 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Notch 3 Notch 3 Notch 3 Notch 3 Notch 4 Notch 5 Notch 6 Notch 7 Notch 8	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.166 0.113 0.085 0.085	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 31.2 13.7 22.3 27.1 27.6 26.6 RB diesel (% VOF 76.0 48.9	0.148 EM-2663-F VOF, g/hp-hr 0.322 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.154 0.030 0.037 0.023 0.023	5) Unburned OlL, % 64 69 64 55 Unburned OlL, % 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 60 60 60 60 60 60 60 60 60 60 60 60 60	O.244 On- Total Partt g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Partt g/hp-hr 3.435 5.245 3.251 0.106 0.141 0.196 0.092 0.087 On- Total Part g/hp-hr 1.793 2.338	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 30.0 36.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.034 0.032 0.034 0.032 0.034 0.032 0.034 0.032 0.034 0.035 0.034 0.038 0.034 0.038	7-F) Unburned OIL, %	0.297 High Sulfu 1.828 4.068 1.828 4.068 0.260 0.212 0.283 0.260 0.2412 0.296 0.291 0.203 0.260 0.241 0.217 0.203 0.260 0.241 0.217 0.203 0.260 0.241 0.217 0.203 0.260 0.229 0.260 0.212 0.283 0.260 0.299 0.195 0.290 0.299 0.195 0.206 0.212 High Sulfu Total Part q/hp-hr Total Part q/hp-hr 1.696	49.0 r, Nonroac % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 32.1 49.6 36.1 10.5 14.4 16.3 16.5 r, Nonroac % VOF 39.8 25.1	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.035 0.026 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.0175 0.0175 0.0175 0.031 0.033 0.032 0.035	83 M-2664-F) Unburned OlL, % 19 22 56 63 62 70 73 79 68 51 Unburned OlL, % 34 34 34 47 77 53 42 40 37 M-2664-F) Unburned OlL, % 48 45 47 40 40 40 40 40 44 41 66
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 5 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Notch 1 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Low Idle Idle Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3 27.1 27.6 8 RB diesel (% VOF RB diesel (% VOF 76.0 48.9 50.1	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.074 0.030 0.031 0.023 0.023	80 Unburned OlL, % 53 355 27 64 69 644 55 55 64 01L, % 68 42 68 42 68 74 46 66 52 50 Unburned OlL, % 65 65 46 46 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.196 0.092 0.087 Total Parti g/hp-hr 1.793 2.338 2.463	Hwy Diesse % VOF 24.4 20.6 22.0 52.3 55.1 15.2 20.1 20.4 19.5 WOF 75.0 75.0 79.2 28.9 15.4 30.7 16.6 30.7 16.6 30.7 16.6 30.7 4 WOF 36.0 30.0 30.0 30.0 30.0	0.147 In (EM-267' VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.023 0.024 0.022 0.023 0.024 0.032 0.024 0.032 0.024 0.032 0.024 0.032 0.025 0.051 0.064 0.030 0.051 0.0645 0.0645 0.0645 0.0641 0.0645 0.0691	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 555 44 7-F) Unburned OlL, % 62 38 27 65 55 51 52 43 39 7-F) Unburned OlL, % 100 1000 1000	0.297 High Suffur Total Part (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Suffur 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.296 0.206 0.212 High Suffur Total Part (g/hp-hr 1.696 0.229	49.0 r, Nonroac % % VOF 36.1 30.1 26.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 * * * * * * * * * * * * * * * * * *	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.035 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.037 0.032 0.032 0.034 0.035 0.032 0.035 0.032 0.035 0.036 0.036 0.037 0.037 0.031 0.032 0.035 0.032 0.035 0.032 0.035 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.038 0.03	M-2664-F)
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 6 Notch 7 NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 6 Notch 1 Notch 6 Notch 7 NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 7 Notch 7 Notch 9 TEST NO. DB-2 Low Idle Idle Idle Notch 1 Notch 1 Notch 1 Notch 7 Notch 1	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687	88 diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 88 diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 27.6 26.6 88 diesel (% VOF 76.0 48.9 50.1	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.031 0.023 0.023 EM-2663-F VOF, g/hp-hr 1.164 0.839 0.846 0.839 0.846	80 Unburned OlL, % 69 64 55 64 69 64 655 Unburned OlL, % 66 62 88 74 66 52 54 40 Unburned OlL, % 66 52 54 55 54 55 Unburned OlL, % 66 52 54 55 87	0.244 On- Total Partt g/hp-hr 1.088 1.770 2.120 0.182 0.1055 0.144 0.157 0.149 0.121 0.106 0.117 Total Partt g/hp-hr 3.435 5.245 3.435 5.245 3.245 0.418 0.196 0.092 0.087 On- Total Partt g/hp-hr 1.793 2.338 2.338 2.338	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 29.6 29.6 29.6 33.6	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.055	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 55 Unburned OlL, % 80 62 38 27 65 55 51 51 51 Unburned OlL, % 100 100 100	0.297 High Sulfu Total Part: (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.2412 0.227 0.203 0.226 High Sulfu Total Part: (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323 0.296 0.212 High Sulfu Total Part: (g/hp-hr 1.696 2.340 2.284	49.0 r, Nonroac % VOF 36.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 149.6 36.1 20.1 10.5 144.6 36.1 50.5 7, Nonroac % VOF 7, Nonroac % VOF 9, Nonroac % 16.3 16.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.033 0.032 0.033 0.034 0.035 0.036 1.0117 0.037 0.031 0.035 0.036 0.0	### A 16 A
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 5 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Notch 1 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Low Idle Idle Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687 0.194	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 38.9 56.4 48.7 31.2 21.3 27.1 27.6 26.6 RB diesel (% VOF 76.0 48.9 50.1 100.5	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.154 0.154 0.154 0.030 0.037 0.023 0.023	80 Unburned OlL, % 53 355 27 64 69 644 55 55 64 01L, % 68 42 68 42 68 74 46 66 52 50 Unburned OlL, % 65 65 46 46 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 1.088 0.241 0.157 0.149 0.121 0.106 0.092 0.087 On- Total Parti g/hp-hr 1.793 2.338 2.463 0.283	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 32.5 33.5	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.085 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 555 44 7-F) Unburned OlL, % 62 38 27 65 55 51 52 43 39 7-F) Unburned OlL, % 100 1000 1000	0.297 High Sulfu 1.828 4.068 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.324 0.296 0.229 0.195 0.206 0.212 High Sulfu Total Part g/hp-hr 1.696 0.212	49.0 r, Nonroac % VOF 36.1 30.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 14.4 16.3 16.3 16.5 r, Nonroac r, Nonroac % VOF 39.8 25.1 31.1 61.9 44.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.042 0.035 0.026 0.026 0.026 0.026 0.034 0.033 0.032 0.034 0.035 0.066 0.067 0.0588 0.091 0.056 0.891 0.067 0.089 0.099	83 M-2664-F) Unburned OlL, % 19 22 56 63 70 73 79 68 51 Unburned OlL, % 84 34 34 37 42 40 37 M-2664-F) Unburned OlL, % 44 40 37 M-2664-F) Unburned OlL, % 46 67 67
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 6 Notch 7 NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 6 Notch 1 Notch 6 Notch 7 NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 1 Notch 1 Notch 5 Notch 6 Notch 7 Notch 7 Notch 7 Notch 9 TEST NO. DB-2 Low Idle Idle Idle Notch 1 Notch 1 Notch 1 Notch 7 Notch 1	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.222 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687	88 diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 88 diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 27.6 26.6 88 diesel (% VOF 76.0 48.9 50.1	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.322 0.082 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.074 0.030 0.031 0.023 0.023 EM-2663-F VOF, g/hp-hr 1.164 0.839 0.846 0.839 0.846	80 Unburned OlL, % 69 64 55 64 69 64 655 Unburned OlL, % 66 62 88 74 66 52 54 40 Unburned OlL, % 66 52 54 55 54 55 Unburned OlL, % 66 52 54 55 87	0.244 On- Total Partt g/hp-hr 1.088 1.770 2.120 0.182 0.1055 0.144 0.157 0.149 0.121 0.106 0.117 Total Partt g/hp-hr 3.435 5.245 3.435 5.245 3.245 0.418 0.196 0.092 0.087 On- Total Partt g/hp-hr 1.793 2.338 2.338 2.338	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 29.6 29.6 29.6 33.6	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.055	7-F) Unburned OlL, % 32 25 23 66 73 67 64 53 55 Unburned OlL, % 80 62 38 27 65 55 51 51 51 Unburned OlL, % 100 100 100	0.297 High Sulfu Total Part: (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.2412 0.227 0.203 0.226 High Sulfu Total Part: (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.323 0.296 0.212 High Sulfu Total Part: (g/hp-hr 1.696 2.340 2.284	49.0 r, Nonroac % VOF 36.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 149.6 36.1 20.1 10.5 144.6 36.1 50.5 7, Nonroac % VOF 7, Nonroac % VOF 9, Nonroac % 16.3 16.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.032 0.035 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.033 0.032 0.033 0.034 0.035 0.036 1.0117 0.037 0.031 0.035 0.036 0.0	### A 16 A
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9734 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 6 Notch 7 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687 0.194	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 38.9 56.4 48.7 31.2 21.3 27.1 27.6 26.6 RB diesel (% VOF 76.0 48.9 50.1 100.5	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.154 0.154 0.154 0.030 0.037 0.023 0.023	5) Unburned OlL, % 64 69 64 55 Unburned OlL, % 69 64 40 55 50 Unburned OlL, % 66 52 54 40 40 55 Unburned OlL, % 66 52 54 47 46 40 Unburned OlL, % 65 87	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 1.088 0.241 0.157 0.149 0.121 0.106 0.092 0.087 On- Total Parti g/hp-hr 1.793 2.338 2.463 0.283	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 32.5 33.5	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.085 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.038	7-F) Unburned OIL, % G12 G25 G36 G33 G67 G44 S33 S55 S44 7-F) Unburned OIL, % G22 G33 G37 G7 G44 G44 G44 G44 G44 G53 G55 G55 G55 G55 G55 G55 G55 G55 G55	0.297 High Sulfu 1.828 4.068 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.324 0.296 0.229 0.195 0.206 0.212 High Sulfu Total Part g/hp-hr 1.696 0.212	49.0 r, Nonroac % VOF 36.1 30.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 14.4 16.3 16.3 16.5 r, Nonroac r, Nonroac % VOF 39.8 25.1 31.1 61.9 44.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.042 0.035 0.026 0.026 0.026 0.026 0.034 0.033 0.032 0.034 0.035 0.066 0.067 0.0588 0.091 0.056 0.891 0.067 0.089 0.099	83 M-2664-F) Unburned OlL, % 19 22 56 63 70 73 79 68 51 Unburned OlL, % 84 34 34 37 42 40 37 M-2664-F) Unburned OlL, % 47 42 40 37 M-2664-F) Unburned OlL, % 46 67 M-2664-F) Unburned OlL, % 47 42 40 37
Notch 8 UP 9715 TEST NO. DB-2 Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.379 0.316 0.236 0.194 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 0.194 0.194 0.136 0.194 0.136	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 13.7 22.3 27.1 27.6 26.6 RB diesel (% VOF 76.0 48.9 50.1 100.5 87.7 60.3	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.050 0.050 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.030 0.031 0.023 EM-2663-F VOF, g/hp-hr 1.164 0.846 0.195 0.846 0.195 0.119	80 Unburned OlL, % 53 355 27 64 69 644 555 64 69 64 655 Unburned OlL, % 46 68 74 46 66 52 54 40 Unburned OlL, % 65 87 100 87	0.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Parti g/hp-hr 3.435 5.2451 3.251 0.550 0.418 0.241 0.196 0.092 0.087 Total Parti g/hp-hr 1.793 2.338 2.463 0.253 0.153	Hwy Diese % VOF 24.4 20.6 22.0 52.1 35.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 75.0 75.0 75.0 36.0 30.0 36.4 Hwy Diese % VOF 36.0 30.0 36.4 Hwy Diese % VOF 36.0 30.0 36.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.032 0.024 0.022 0.023 0.024 0.032 0.024 0.032 0.024 0.033 0.044 0.022 0.023	7-F) Unburned OIL, % 32 255 23 66 73 67 64 53 555 44 7-F) Unburned OIL, % 80 62 38 27 655 551 52 43 39 7-F) Unburned OIL, % 100 100 100 100 80	0.297 High Sulfut Total Part (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfut Total Part (g/hp-hr 3.855 3.617 0.353 0.323 0.324 0.296 0.212 High Sulfut Color of the sulfut Color of the sulfut Color of the sulfut (g/hp-hr 1.696 0.212 High Sulfut Color of the sulfut	49.0 r, Nonroae % % VOF 36.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 17.3 11.3 0 11.3 r, Nonroae % VOF 41.2 30.3 29.1 49.6 36.1 11.0 5 11.4 16.3 16.5 r, Nonroae % VOF 39.8 25.1 31.1 61.9 45.5 22.9	d diesel (E VOF, g/hp-hr 1.588 1.095 1.011 0.033 0.032 0.034 0.035 d diesel (E VOF, g/hp-hr 1.588 0.066 0.588 0.035 0.036 0.03	83 8M-2664-F) 199 222 56 633 622 70 73 79 68 51 8M-2664-F) Unburned OIL, % 48 34 34 34 34 34 37 47 42 40 37 Unburned OIL, % 41 46 69 71 48
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 6 Notch 7 Notch 8 UP 9734 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 6 Notch 7 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.105 CAF Total Part., g/hp-hr 2.247 4.266 3.513 0.316 0.236 0.222 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687 0.194 0.136 0.136 0.136	RB diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 RB diesel (% VOF 38.9 56.4 48.7 31.2 21.3 27.1 27.6 26.6 RB diesel (% VOF 76.0 48.9 50.1 100.5 87.7 60.3 20.6 24.0	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.050 0.056 0.019 0.031 0.022 0.082 0.050 0.056 0.019 0.031 0.029 0.033 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.154 0.074 0.030 0.037 0.031 0.023 EM-2663-F VOF, g/hp-hr 1.164 0.839 0.846 0.195 0.119 0.075 0.019	80 Unburned OlL, % 69 64 55 64 69 64 55 64 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 64 69 60 64 69 60 64 68 74 66 66 65 64 40 Unburned OlL, % 66 65 68 87 100 87	O.244 On- Total Parti g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 Total Parti g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.196 0.191 0.196 0.092 0.087 On- Total Parti g/hp-hr 1.793 2.338 2.463 0.245 0.185 0.185 0.133 0.185	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 35.1 15.2 20.1 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 30.0 36.4 Hwy Diese 32.9 26.0 30.0 36.4	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.036 0.035 0.036 0.035 0.036 0.036 0.035 0.036 0.036 0.036 0.036 0.036 0.036	7-F) Unburned OIL, % G12 G25 G66 G33 G67 G44 S3 S55 S44 7-F) Unburned OIL, % G22 G33 G67 G44 G44 G44 G44 G44 G53 G55 G55 G55 G55 G55 G55 G55 G55 G55	0.297 High Sulfu 1.828 4.068 1.828 4.068 0.260 0.212 0.283 0.260 0.241 0.217 0.203 0.226 High Sulfu Total Part g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.334 0.296 0.229 0.195 0.206 0.212 High Sulfu Total Part g/hp-hr 1.696 0.212 1.828 1.8	49.0 r, Nonroac % VOF 36.1 30.1 30.1 126.4 50.5 30.3 21.8 13.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 14.4 16.3 16.3 16.5 r, Nonroac r, Nonroac % VOF 39.8 25.1 31.1 61.9 45.5 22.9 11.0 11.0	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 1.588 1.095 1.010 0.033 0.033 0.034 0.035 0.036 1.010 0.035 0.036 0.03	83 M-2664-F) Unburned OlL, % 37 56 63 62 70 73 79 68 51 M-2664-F) Unburned OlL, % 48 34 34 34 37 42 40 37 Unburned OlL, % 45 47 42 40 37 Unburned OlL, % 48 38 38 37
Notch 8 UP 9715 TEST NO. DB-2 Low Idle Idle Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 7 Notch 8 UP 9733 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 5 Notch 6 Notch 7 Notch 8 UP 9724 TEST NO. DB-2 Low Idle Idle Notch 1 Notch 2 Notch 1 Notch 5 Notch 8 UP 9733	CAF Total Part., g/hp-hr 1.769 2.256 1.471 0.151 0.104 0.196 0.183 0.171 0.124 0.091 0.105 CAF Total Part., g/hp-hr 4.266 3.513 0.379 0.316 0.236 0.166 0.113 0.085 0.085 CAF Total Part., g/hp-hr 1.531 1.718 1.687 0.194 0.136 0.124 0.136 0.124 0.136 0.124 0.136 0.124 0.136 0.124	8B diesel (% VOF 24.0 20.7 21.9 54.4 48.5 28.6 10.4 18.0 23.7 25.2 23.0 8B diesel (% VOF 44.4 25.7 38.9 56.4 48.7 31.2 21.3 27.1 27.6 26.6 8B diesel (% VOF 60.0 48.9 50.1 100.5 87.7 60.3 20.6	0.148 EM-2663-F VOF, g/hp-hr 0.424 0.467 0.056 0.019 0.031 0.029 0.023 0.024 EM-2663-F VOF, g/hp-hr 0.999 1.095 1.365 0.214 0.154 0.154 0.030 0.037 0.023 0.023	5) Unburned OlL, % 64 69 64 55 Unburned OlL, % 69 64 40 55 Unburned OlL, % 66 52 54 40 40 55 Unburned OlL, % 66 52 54 40 40 40 40 40 40 40 40 40 40 40 40 40	O.244 On- Total Part (g/hp-hr 1.088 1.770 2.120 0.182 0.105 0.144 0.157 0.149 0.121 0.106 0.117 On- Total Part (g/hp-hr 3.435 5.245 3.251 0.550 0.418 0.241 0.106 0.092 0.087 On- Total Part (g/hp-hr 1.793 2.338 2.463 0.283 0.185 0.133 0.124 0.124	Hwy Diese % VOF 24.4 20.6 22.0 52.9 52.1 15.2 20.1 20.4 19.5 Hwy Diese % VOF 75.0 79.2 28.9 15.4 31.6 30.7 16.6 23.9 26.0 30.0 36.4 Hwy Diese % VOF 36.0 30.0 36.4 Hwy Diese % 45.8 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33	0.147 VOF, g/hp-hr 0.265 0.364 0.467 0.096 0.055 0.051 0.024 0.022 0.023 0.024 0.022 0.023 0.034 0.035 0.085 0.036 0.036 0.036 0.036 0.036 0.036 0.030 0.034	7-F) Unburned OlL, % 64 53 66 73 67 64 53 55 44 7-F) Unburned OlL, % 80 62 38 27 65 55 51 52 43 39 7-F) Unburned OlL, % 80 60 68	0.297 High Sulfu Total Parti (g/hp-hr 1.828 4.068 2.680 0.260 0.212 0.283 0.260 0.2412 0.227 0.203 0.226 High Sulfu Total Parti (g/hp-hr 3.855 3.617 3.471 0.353 0.323 0.324 0.296 0.212 High Sulfu Total Parti (g/hp-hr 1.696 0.212 High Sulfu Total Parti (g/hp-hr 1.696 0.212 O.264 0.215 0.264 0.215 0.261	49.0 r, Nonroac % VOF 36.1 30.1 1.30.1 1.30.1 17.3 16.1 13.0 11.3 r, Nonroac % VOF 41.2 30.3 29.1 10.5 14.4 16.3 16.5 r, Nonroac % VOF r, Nonroac % VOF 41.2 30.3 16.5 14.4 16.3 16.5 14.4 16.3 16.5 14.4 16.3 16.5 14.5 16.5 17.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	d diesel (E VOF, g/hp-hr 0.660 1.224 0.709 0.131 0.064 0.062 0.035 0.026 0.026 0.026 d diesel (E VOF, g/hp-hr 0.676 0.033 0.032 0.034 0.035 0.036 0.036 0.036 0.036 0.036 0.099 0.060 0.060 0.03	**M-2664-F)* Unburned OlL, %

APPENDIX K

Metal Particulate Data

APPENDIX K-1: LOCOMOTIVE BN9693

CARB Diesel

	METAL PM EMISSIONS, mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <68.3	ND, <130.5	ND, <109.3	ND, <103.1	ND, <168.0	ND, <228.8	ND, <285.1	ND, <518.9	ND, <567.5	ND, <651.1		
ARSENIC	ND, <68.3	ND, <130.5	ND, <109.3	ND, <103.1	ND, <168.0	ND, <228.8	ND, <285.1	ND, <518.9	ND, <567.5	ND, <651.1		
BERYLLIUM	ND, <13.7	ND, <26.1	ND, <21.9	ND, <20.6	ND, <33.6	ND, <45.8	ND, <57.0	ND, <103.8	ND, <113.5	ND, <130.2		
CADMIUM	ND, <13.7	ND, <26.1	ND, <21.9	ND, <20.6	ND, <33.6	ND, <45.8	ND, <57.0	ND, <103.8	ND, <113.5	ND, <130.2		
CHROMIUM	57.76	662.97	ND, <21.9	120.07	164.28	278.64	332.96	625.84	617.43	968.90		
COBALT	ND, <13.7	ND, <26.1	ND, <21.9	ND, <20.6	ND, <33.6	ND, <45.8	ND, <57.0	ND, <103.8	ND, <113.5	ND, <130.2		
COPPER	ND, <13.7	ND, <26.1	ND, <21.9	ND, <20.6	ND, <33.6	ND, <45.8	ND, <57.0	ND, <103.8	ND, <113.5	ND, <130.2		
LEAD	ND, <41.0	ND, <78.3	ND, <65.6	ND, <61.9	ND, <100.8	ND, <137.3	ND, <171.0	ND, <311.4	ND, <340.5	ND, <390.7		
MANGANESE	ND, <13.7	ND, <26.1	ND, <21.9	ND, <20.6	ND, <33.6	ND, <45.8	ND, <57.0	ND, <103.8	ND, <113.5	ND, <130.2		
MERCURY	ND, <2.7	ND, <5.2	ND, <4.4	ND, <4.1	ND, <6.7	ND, <9.2	ND, <11.4	ND, <20.8	ND, <22.7	ND, <26.0		
NICKEL	ND, <68.3	ND, <130.5	ND, <109.3	ND, <103.1	ND, <168.0	ND, <228.8	ND, <285.1	ND, <518.9	ND, <567.5	ND, <651.1		
SELENIUM	ND, <68.3	ND, <130.5	ND, <109.3	ND, <103.1	ND, <168.0	ND, <228.8	ND, <285.1	ND, <518.9	ND, <567.5	ND, <651.1		

ON-HIGHWAY DIESEL

	METAL PM EMISSIONS, mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <91.8	ND, <128.8	ND, <106.8	ND, <132.4	ND, <164.0	ND, <232.6	ND, <330.3	ND, <434.5	ND, <614.4	ND, <698.8		
ARSENIC	ND, <91.8	ND, <128.8	ND, <106.8	ND, <132.4	ND, <164.0	ND, <232.6	ND, <330.3	ND, <434.5	ND, <614.4	ND, <698.8		
BERYLLIUM	ND, <18.4	ND, <25.8	ND, <21.4	ND, <26.5	ND, <32.8	ND, <46.5	ND, <66.1	ND, <86.9	ND, <122.9	ND, <139.8		
CADMIUM	ND, <18.4	ND, <25.8	ND, <21.4	ND, <26.5	ND, <32.8	ND, <46.5	ND, <66.1	ND, <86.9	ND, <122.9	ND, <139.8		
CHROMIUM	ND, <18.4	204.82	110.04	140.88	182.07	260.10	412.22	429.29	603.32	626.11		
COBALT	ND, <18.4	ND, <25.8	ND, <21.4	ND, <26.5	ND, <32.8	ND, <46.5	ND, <66.1	ND, <86.9	ND, <122.9	ND, <139.8		
COPPER	ND, <18.4	ND, <25.8	ND, <21.4	ND, <26.5	ND, <32.8	ND, <46.5	ND, <66.1	ND, <86.9	ND, <122.9	ND, <139.8		
LEAD	ND, <55.1	ND, <77.3	ND, <64.1	ND, <79.4	ND, <98.4	ND, <139.6	ND, <198.2	ND, <260.7	ND, <368.6	ND, <419.3		
MANGANESE	ND, <18.4	ND, <25.8	ND, <21.4	ND, <26.5	ND, <32.8	ND, <46.5	ND, <66.1	ND, <86.9	ND, <122.9	ND, <139.8		
MERCURY	ND, <3.7	ND, <5.2	ND, <4.3	ND, <5.3	ND, <6.6	ND, <9.3	ND, <13.2	ND, <17.4	ND, <24.6	ND, <28.0		
NICKEL	ND, <91.8	ND, <128.8	ND, <106.8	ND, <132.4	ND, <164.0	ND, <232.6	ND, <330.3	ND, <434.5	ND, <614.4	ND, <698.8		
SELENIUM	ND, <91.8	ND, <128.8	ND, <106.8	ND, <132.4	ND, <164.0	ND, <232.6	ND, <330.3	ND, <434.5	ND, <614.4	ND, <698.8		

	METAL PM EMISSIONS, mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <83.6	ND, <124.4	ND, <98.4	ND, <111.2	ND, <215.1	ND, <282.7	ND, <311.4	ND, <409.4	ND, <551.8	ND, <747.0		
ARSENIC	ND, <83.6	ND, <124.4	ND, <98.4	ND, <111.2	ND, <215.1	ND, <282.7	ND, <311.4	ND, <409.4	ND, <551.8	ND, <747.0		
BERYLLIUM	ND, <16.7	ND, <24.9	ND, <19.7	ND, <22.2	ND, <43.0	ND, <56.5	ND, <62.3	ND, <81.9	ND, <110.4	ND, <149.4		
CADMIUM	ND, <16.7	ND, <24.9	ND, <19.7	ND, <22.2	ND, <43.0	ND, <56.5	ND, <62.3	ND, <81.9	ND, <110.4	ND, <149.4		
CHROMIUM	TRACE	94.05	62.01	110.06	221.10	ND, <56.5	274.66	474.93	507.66	856.07		
COBALT	ND, <16.7	ND, <24.9	ND, <19.7	ND, <22.2	ND, <43.0	ND, <56.5	ND, <62.3	ND, <81.9	ND, <110.4	ND, <149.4		
COPPER	ND, <16.7	ND, <24.9	ND, <19.7	ND, <22.2	ND, <43.0	ND, <56.5	ND, <62.3	ND, <81.9	ND, <110.4	ND, <149.4		
LEAD	ND, <50.1	ND, <74.6	ND, <59.1	ND, <66.7	ND, <129.0	ND, <169.6	ND, <186.8	ND, <245.7	ND, <331.1	ND, <448.2		
MANGANESE	ND, <16.7	ND, <24.9	ND, <19.7	ND, <22.2	ND, <43.0	ND, <56.5	ND, <62.3	ND, <81.9	ND, <110.4	ND, <149.4		
MERCURY	ND, <3.3	ND, <5.0	ND, <3.9	ND, <4.4	ND, <8.6	ND, <11.3	ND, <12.5	ND, <16.4	ND, <22.1	ND, <29.9		
NICKEL	ND, <83.6	ND, <124.4	ND, <98.4	ND, <111.2	ND, <215.1	ND, <282.7	ND, <311.4	ND, <409.4	ND, <551.8	ND, <747.0		
SELENIUM	ND, <83.6	ND, <124.4	ND, <98.4	ND, <111.2	ND, <215.1	ND, <282.7	ND, <311.4	ND, <409.4	ND, <551.8	ND, <747.0		

APPENDIX K-2: LOCOMOTIVE BN9754

CARB Diesel

	METAL PM EMISSIONS , mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <59.3	ND, <80.6	ND, <66.4	ND, <108.3	ND, <166.7	ND, <296.4	ND, <348.0	ND, <574.0	ND, <730.2	ND, <794.4		
ARSENIC	ND, <59.3	ND, <80.6	ND, <66.4	ND, <108.3	ND, <166.7	ND, <296.4	ND, <348.0	ND, <574.0	ND, <730.2	ND, <794.4		
BERYLLIUM	ND, <11.9	ND, <16.1	ND, <13.3	ND, <21.7	ND, <33.3	ND, <59.3	ND, <69.6	ND, <114.8	ND, <146.0	ND, <158.9		
CADMIUM	ND, <11.9	ND, <16.1	ND, <13.3	ND, <21.7	ND, <33.3	ND, <59.3	ND, <69.6	ND, <114.8	ND, <146.0	ND, <158.9		
CHROMIUM	52.19	68.98	63.49	93.77	135.04	TRACE	TRACE	542.97	553.52	732.45		
COBALT	ND, <11.9	ND, <16.1	ND, <13.3	ND, <21.7	ND, <33.3	ND, <59.3	ND, <69.6	ND, <114.8	ND, <146.0	ND, <158.9		
COPPER	ND, <11.9	ND, <16.1	ND, <13.3	ND, <21.7	ND, <33.3	ND, <59.3	ND, <69.6	ND, <114.8	ND, <146.0	ND, <158.9		
LEAD	ND, <35.6	ND, <48.4	ND, <39.8	ND, <65.0	ND, <100.0	ND, <177.8	ND, <208.8	ND, <344.4	ND, <438.1	ND, <476.6		
MANGANESE	ND, <11.9	ND, <16.1	ND, <13.3	ND, <21.7	ND, <33.3	ND, <59.3	ND, <69.6	ND, <114.8	ND, <146.0	ND, <158.9		
MERCURY	ND, <2.4	ND, <3.2	ND, <2.7	ND, <4.3	ND, <6.7	ND, <11.9	ND, <13.9	ND, <23.0	ND, <29.2	ND, <31.8		
NICKEL	ND, <59.3	ND, <80.6	ND, <66.4	ND, <108.3	ND, <166.7	ND, <296.4	ND, <348.0	ND, <574.0	ND, <730.2	ND, <794.4		
SELENIUM	ND, <59.3	ND, <80.6	ND, <66.4	ND, <108.3	ND, <166.7	ND, <296.4	ND, <348.0	ND, <574.0	ND, <730.2	ND, <794.4		

ON-HIGHWAY DIESEL

	METAL PM EMISSIONS , mg/hr											
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <90.6	ND, <60.6	ND, <78.5	ND, <141.8	ND, <181.7	ND, <203.1	ND, <328.7	ND, <435.0	ND, <466.4	ND, <290.3		
ARSENIC	ND, <90.6	ND, <60.6	ND, <78.5	ND, <141.8	ND, <181.7	ND, <203.1	ND, <328.7	ND, <435.0	ND, <466.4	ND, <290.3		
BERYLLIUM	ND, <18.1	ND, <12.1	ND, <15.7	ND, <28.4	ND, <36.3	ND, <40.6	ND, <65.7	ND, <87.0	ND, <93.3	ND, <58.1		
CADMIUM	ND, <18.1	ND, <12.1	ND, <15.7	ND, <28.4	ND, <36.3	ND, <40.6	ND, <65.7	ND, <87.0	ND, <93.3	ND, <58.1		
CHROMIUM	71.41	47.48	49.92	TRACE	202.03	172.20	301.07	452.37	373.09	263.62		
COBALT	ND, <18.1	ND, <12.1	ND, <15.7	ND, <28.4	ND, <36.3	ND, <40.6	ND, <65.7	ND, <87.0	ND, <93.3	ND, <58.1		
COPPER	ND, <18.1	ND, <12.1	ND, <15.7	ND, <28.4	ND, <36.3	ND, <40.6	ND, <65.7	ND, <87.0	ND, <93.3	ND, <58.1		
LEAD	ND, <54.4	ND, <36.3	ND, <47.1	ND, <85.1	ND, <109.0	ND, <121.8	ND, <197.2	ND, <261.0	ND, <279.8	ND, <174.2		
MANGANESE	ND, <18.1	ND, <12.1	ND, <15.7	ND, <28.4	ND, <36.3	ND, <40.6	ND, <65.7	ND, <87.0	ND, <93.3	ND, <58.1		
MERCURY	ND, <3.6	ND, <2.4	ND, <3.1	ND, <5.7	ND, <7.3	ND, <8.1	ND, <13.1	ND, <17.4	ND, <18.7	ND, <11.6		
NICKEL	ND, <90.6	ND, <60.6	ND, <78.5	ND, <141.8	ND, <181.7	ND, <203.1	ND, <328.7	ND, <435.0	ND, <466.4	ND, <290.3		
SELENIUM	ND, <90.6	ND, <60.6	ND, <78.5	ND, <141.8	ND, <181.7	ND, <203.1	ND, <328.7	ND, <435.0	ND, <466.4	ND, <290.3		

	METAL PM EMISSIONS , mg/hr												
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch			
NAME	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00			
ANTIMONY	ND, <71.1	ND, <104.9	ND, <74.6	ND, <116.5	ND, <238.1	ND, <359.0	ND, <347.3	ND, <416.7	ND, <647.7	ND, <638.7			
ARSENIC	ND, <71.1	ND, <104.9	ND, <74.6	ND, <116.5	ND, <238.1	ND, <359.0	ND, <347.3	ND, <416.7	ND, <647.7	ND, <638.7			
BERYLLIUM	ND, <14.2	ND, <21.0	ND, <14.9	ND, <23.3	ND, <47.6	ND, <71.8	ND, <69.5	ND, <83.3	ND, <129.5	ND, <127.7			
CADMIUM	ND, <14.2	ND, <21.0	ND, <14.9	ND, <23.3	ND, <47.6	ND, <71.8	ND, <69.5	ND, <83.3	ND, <129.5	ND, <127.7			
CHROMIUM	67.80	107.46	73.86	102.79	243.80	284.32	384.78	415.05	719.00	786.83			
COBALT	ND, <14.2	ND, <21.0	ND, <14.9	ND, <23.3	ND, <47.6	ND, <71.8	ND, <69.5	ND, <83.3	ND, <129.5	ND, <127.7			
COPPER	ND, <14.2	ND, <21.0	ND, <14.9	ND, <23.3	ND, <47.6	ND, <71.8	ND, <69.5	ND, <83.3	ND, <129.5	ND, <127.7			
LEAD	ND, <42.6	ND, <63.0	ND, <44.8	ND, <69.9	ND, <142.9	ND, <215.4	ND, <208.4	ND, <250.0	ND, <388.6	ND, <383.2			
MANGANESE	ND, <14.2	ND, <21.0	ND, <14.9	ND, <23.3	ND, <47.6	ND, <71.8	ND, <69.5	ND, <83.3	ND, <129.5	ND, <127.7			
MERCURY	ND, <2.8	ND, <4.2	ND, <3.0	ND, <4.7	ND, <9.5	ND, <14.4	ND, <13.9	ND, <16.7	ND, <25.9	ND, <25.5			
NICKEL	ND, <71.1	ND, <104.9	ND, <74.6	ND, <116.5	ND, <238.1	ND, <359.0	ND, <347.3	ND, <416.7	ND, <647.7	ND, <638.7			
SELENIUM	ND, <71.1	ND, <104.9	ND, <74.6	ND, <116.5	ND, <238.1	ND, <359.0	ND, <347.3	ND, <416.7	ND, <647.7	ND, <638.7			

APPENDIX K-3: LOCOMOTIVE UP9715 CARB Diesel

METAL PM EMISSIONS , mg/hr													
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch		
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00		
ANTIMONY	ND, <27.1	ND, <28.2	ND, <41.0	ND, <40.3	ND, <81.3	ND, <156.0	ND, <331.9	ND, <446.9	ND, <577.2	ND, <712.4	ND, <790.6		
ARSENIC	ND, <27.1	ND, <28.2	ND, <41.0	ND, <40.3	ND, <81.3	ND, <156.0	ND, <331.9	ND, <446.9	ND, <577.2	ND, <712.4	ND, <790.6		
BERYLLIUM	ND, <5.4	ND, <5.6	ND, <8.2	ND, <8.1	ND, <16.3	ND, <31.2	ND, <66.4	ND, <89.4	ND, <115.4	ND, <142.5	ND, <158.1		
CADMIUM	ND, <5.4	ND, <5.6	ND, <8.2	ND, <8.1	ND, <16.3	ND, <31.2	ND, <66.4	ND, <89.4	ND, <115.4	ND, <142.5	ND, <158.1		
CHROMIUM	38.26	25.50	59.80	41.12	81.61	165.99	TRACE	342.31	709.94	579.91	1 845.90		
COBALT	ND, <5.4	ND, <5.6	ND, <8.2	ND, <8.1	ND, <16.3	ND, <31.2	ND, <66.4	ND, <89.4	ND, <115.4	ND, <142.5	ND, <158.1		
COPPER	ND, <5.4	ND, <5.6	ND, <8.2	ND, <8.1	ND, <16.3	ND, <31.2	ND, <66.4	ND, <89.4	ND, <115.4	ND, <142.5	ND, <158.1		
LEAD	ND, <16.3	ND, <16.9	ND, <24.6	ND, <24.2	ND, <48.8	ND, <93.6	ND, <199.2	ND, <268.1	ND, <346.3	ND, <427.4	ND, <474.3		
MANGANESE	ND, <5.4	ND, <5.6	ND, <8.2	ND, <8.1	ND, <16.3	ND, <31.2	ND, <66.4	ND, <89.4	ND, <115.4	ND, <142.5	ND, <158.1		
MERCURY	ND, <1.1	ND, <1.1	ND, <1.6	ND, <1.6	ND, <3.3	ND, <6.2	ND, <13.3	ND, <17.9	ND, <23.1	ND, <28.5	ND, <31.6		
NICKEL	ND, <27.1	ND, <28.2	ND, <41.0	ND, <40.3	ND, <81.3	ND, <156.0	ND, <331.9	ND, <446.9	ND, <577.2	ND, <712.4	ND, <790.6		
SELENIUM	ND, <27.1	ND, <28.2	ND, <41.0	ND, <40.3	ND, <81.3	ND, <156.0	ND, <331.9	ND, <446.9	ND, <577.2	ND, <712.4	ND, <790.6		

ON-HIGHWAY DIESEL

			METAI	- PM E	MISSIC	ONS , n	ng/hr				
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
ANTIMONY	ND, <24.2	ND, <7.5	ND, <26.3	ND, <32.5	ND, <81.3	ND, <189.8	ND, <277.5	ND, <435.7	ND, <587.3	ND, <680.3	ND, <942.3
ARSENIC	ND, <24.2	ND, <7.5	ND, <26.3	ND, <32.5	ND, <81.3	ND, <189.8	ND, <277.5	ND, <435.7	ND, <587.3	ND, <680.3	ND, <942.3
BERYLLIUM	ND, <4.8	ND, <1.5	ND, <5.3	ND, <6.5	ND, <16.3	ND, <38.0	ND, <55.5	ND, <87.1	ND, <117.5	ND, <136.1	ND, <188.5
CADMIUM	ND, <4.8	ND, <1.5	ND, <5.3	ND, <6.5	ND, <16.3	ND, <38.0	ND, <55.5	ND, <87.1	ND, <117.5	ND, <136.1	ND, <188.5
CHROMIUM	31.36	7.62	28.30	41.53	82.13	TRACE	TRACE	350.30	642.50	715.64	855.62
COBALT	ND, <4.8	ND, <1.5	ND, <5.3	ND, <6.5	ND, <16.3	ND, <38.0	ND, <55.5	ND, <87.1	ND, <117.5	ND, <136.1	ND, <188.5
COPPER	ND, <4.8	ND, <1.5	ND, <5.3	ND, <6.5	ND, <16.3	ND, <38.0	ND, <55.5	ND, <87.1	ND, <117.5	ND, <136.1	ND, <188.5
LEAD	ND, <14.5	ND, <4.5	ND, <15.8	ND, <19.5	ND, <48.8	ND, <113.9	ND, <166.5	ND, <261.4	ND, <352.4	ND, <408.2	ND, <565.4
MANGANESE	ND, <4.8	ND, <1.5	ND, <5.3	ND, <6.5	ND, <16.3	ND, <38.0	ND, <55.5	ND, <87.1	ND, <117.5	ND, <136.1	ND, <188.5
MERCURY	ND, <1.0	ND, <0.3	ND, <1.1	ND, <1.3	ND, <3.3	ND, <7.6	ND, <11.1	ND, <17.4	ND, <23.5	ND, <27.2	ND, <37.7
NICKEL	ND, <24.2	ND, <7.5	ND, <26.3	ND, <32.5	ND, <81.3	ND, <189.8	ND, <277.5	ND, <435.7	ND, <587.3	ND, <680.3	ND, <942.3
SELENIUM	ND, <24.2	ND, <7.5	ND, <26.3	ND, <32.5	ND, <81.3	ND, <189.8	ND, <277.5	ND, <435.7	ND, <587.3	ND, <680.3	ND, <942.3

			METAI	_ PM E	MISSIC	ONS , n	ng/hr				
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
ANTIMONY	ND, <26.7	ND, <24.1	ND, <42.6	ND, <25.8	ND, <61.5	ND, <151.3	ND, <113.0	ND, <363.9	ND, <441.5	ND, <570.3	ND, <704.8
ARSENIC	ND, <26.7	ND, <24.1	ND, <42.6	ND, <25.8	ND, <61.5	ND, <151.3	ND, <113.0	ND, <363.9	ND, <441.5	ND, <570.3	ND, <704.8
BERYLLIUM	ND, <5.3	ND, <4.8	ND, <8.5	ND, <5.2	ND, <12.3	ND, <30.3	ND, <22.6	ND, <72.8	ND, <88.3	ND, <114.1	ND, <141.0
CADMIUM	ND, <5.3	ND, <4.8	ND, <8.5	ND, <5.2	ND, <12.3	ND, <30.3	ND, <22.6	ND, <72.8	ND, <88.3	ND, <114.1	ND, <141.0
CHROMIUM	32.88	41.88	55.19	22.87	120.59	235.35	147.83	547.27	703.70	691.21	933.09
COBALT	ND, <5.3	ND, <4.8	ND, <8.5	ND, <5.2	ND, <12.3	ND, <30.3	ND, <22.6	ND, <72.8	ND, <88.3	ND, <114.1	ND, <141.0
COPPER	ND, <5.3	ND, <4.8	ND, <8.5	ND, <5.2	ND, <12.3	ND, <30.3	ND, <22.6	ND, <72.8	ND, <88.3	ND, <114.1	ND, <141.0
LEAD	ND, <16.0	ND, <14.5	ND, <25.6	ND, <15.5	ND, <36.9	ND, <90.8	ND, <67.8	ND, <218.3	ND, <264.9	ND, <342.2	ND, <422.9
MANGANESE	ND, <5.3	ND, <4.8	ND, <8.5	ND, <5.2	ND, <12.3	ND, <30.3	ND, <22.6	ND, <72.8	ND, <88.3	ND, <114.1	ND, <141.0
MERCURY	ND, <1.1	ND, <1.0	ND, <1.7	ND, <1.0	ND, <2.5	ND, <6.1	ND, <4.5	ND, <14.6	ND, <17.7	ND, <22.8	ND, <28.2
NICKEL	ND, <26.7	ND, <24.1	ND, <42.6	ND, <25.8	ND, <61.5	ND, <151.3	ND, <113.0	ND, <363.9	ND, <441.5	ND, <570.3	ND, <704.8
SELENIUM	ND. <26.7	ND. <24.1	ND. <42.6	ND. <25.8	ND. <61.5	ND. <151.3	ND. <113.0	ND. <363.9	ND. <441.5	ND. <570.3	ND. <704.8

APPENDIX K-4: LOCOMOTIVE UP9724

CARB Diesel

			METAI	_ PM E	MISSIC	DNS , m	ng/hr				
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
ANTIMONY	ND, <32.7	ND, <38.3	ND, <20.6	ND, <40.3	ND, <83.4	ND, <187.1	ND, <274.4	ND, <427.0	ND, <478.0	ND, <731.6	ND, <924.0
ARSENIC	ND, <32.7	ND, <38.3	ND, <20.6	ND, <40.3	ND, <83.4	ND, <187.1	ND, <274.4	ND, <427.0	ND, <478.0	ND, <731.6	ND, <924.0
BERYLLIUM	ND, <6.5	ND, <7.7	ND, <4.1	ND, <8.1	ND, <16.7	ND, <37.4	ND, <54.9	ND, <85.4	ND, <95.6	ND, <146.3	ND, <184.8
CADMIUM	ND, <6.5	ND, <7.7	ND, <4.1	ND, <8.1	ND, <16.7	ND, <37.4	ND, <54.9	ND, <85.4	ND, <95.6	ND, <146.3	ND, <184.8
CHROMIUM	26.17	TRACE	17.05	30.38	63.92	135.06	266.75	455.18	490.39	733.09	TRACE
COBALT	ND, <6.5	ND, <7.7	ND, <4.1	ND, <8.1	ND, <16.7	ND, <37.4	ND, <54.9	ND, <85.4	ND, <95.6	ND, <146.3	ND, <184.8
COPPER	ND, <6.5	ND, <7.7	ND, <4.1	ND, <8.1	ND, <16.7	ND, <37.4	ND, <54.9	ND, <85.4	ND, <95.6	ND, <146.3	ND, <184.8
LEAD	ND, <19.6	ND, <23.0	ND, <12.4	ND, <24.2	ND, <50.1	ND, <112.2	ND, <164.7	ND, <256.2	ND, <286.8	ND, <439.0	ND, <554.4
MANGANESE	ND, <6.5	ND, <7.7	ND, <4.1	ND, <8.1	ND, <16.7	ND, <37.4	ND, <54.9	ND, <85.4	ND, <95.6	ND, <146.3	ND, <184.8
MERCURY	ND, <1.3	ND, <1.5	ND, <0.8	ND, <1.6	ND, <3.3	ND, <7.5	ND, <11.0	ND, <17.1	ND, <19.1	ND, <29.3	ND, <37.0
NICKEL	ND, <32.7	ND, <38.3	ND, <20.6	ND, <40.3	ND, <83.4	ND, <187.1	ND, <274.4	ND, <427.0	ND, <478.0	ND, <731.6	ND, <924.0
SELENIUM	ND, <32.7	ND, <38.3	ND, <20.6	ND, <40.3	ND, <83.4	ND, <187.1	ND, <274.4	ND, <427.0	ND, <478.0	ND, <731.6	ND, <924.0

ON-HIGHWAY DIESEL

			METAL	- PM E	MISSIC	DNS , m	ng/hr				
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
ANTIMONY	ND, <31.8	ND, <11.2	ND, <49.8	ND, <29.1	ND, <75.2	ND, <202.2	ND, <276.8	ND, <453.1	ND, <542.8	ND, <714.6	ND, <917.2
ARSENIC	ND, <31.8	ND, <11.2	ND, <49.8	ND, <29.1	ND, <75.2	ND, <202.2	ND, <276.8	ND, <453.1	ND, <542.8	ND, <714.6	ND, <917.2
BERYLLIUM	ND, <6.4	ND, <2.2	ND, <10.0	ND, <5.8	ND, <15.0	ND, <40.4	ND, <55.4	ND, <90.6	ND, <108.6	ND, <142.9	ND, <183.4
CADMIUM	ND, <6.4	ND, <2.2	ND, <10.0	ND, <5.8	ND, <15.0	ND, <40.4	ND, <55.4	ND, <90.6	ND, <108.6	ND, <142.9	ND, <183.4
CHROMIUM	42.32	11.34	62.14	28.48	75.69	222.81	306.10	370.62	526.54	TRACE	781.45
COBALT	ND, <6.4	ND, <2.2	ND, <10.0	ND, <5.8	ND, <15.0	ND, <40.4	ND, <55.4	ND, <90.6	ND, <108.6	ND, <142.9	ND, <183.4
COPPER	ND, <6.4	ND, <2.2	ND, <10.0	ND, <5.8	ND, <15.0	ND, <40.4	ND, <55.4	ND, <90.6	ND, <108.6	ND, <142.9	ND, <183.4
LEAD	ND, <19.1	ND, <6.7	ND, <29.9	ND, <17.5	ND, <45.1	ND, <121.3	ND, <166.1	ND, <271.9	ND, <325.7	ND, <428.7	ND, <550.3
MANGANESE	ND, <6.4	ND, <2.2	ND, <10.0	ND, <5.8	ND, <15.0	ND, <40.4	ND, <55.4	ND, <90.6	ND, <108.6	ND, <142.9	ND, <183.4
MERCURY	ND, <1.3	ND, <0.4	ND, <2.0	ND, <1.2	ND, <3.0	ND, <8.1	ND, <11.1	ND, <18.1	ND, <21.7	ND, <28.6	ND, <36.7
NICKEL	ND, <31.8	ND, <11.2	ND, <49.8	ND, <29.1	ND, <75.2	ND, <202.2	ND, <276.8	ND, <453.1	ND, <542.8	ND, <714.6	ND, <917.2
SELENIUM	ND, <31.8	ND, <11.2	ND, <49.8	ND, <29.1	ND, <75.2	ND, <202.2	ND, <276.8	ND, <453.1	ND, <542.8	ND, <714.6	ND, <917.2

			METAL	- PM E	MISSIC	DNS , m	ng/hr				
COMPOUND	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch	Notch
NAME	low idle	idle	DB	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00
ANTIMONY	ND, <25.0	ND, <46.5	ND, <56.0	ND, <28.9	ND, <88.0	ND, <191.3	ND, <262.6	ND, <446.8	ND, <335.3	ND, <696.3	ND, <975.2
ARSENIC	ND, <25.0	ND, <46.5	ND, <56.0	ND, <28.9	ND, <88.0	ND, <191.3	ND, <262.6	ND, <446.8	ND, <335.3	ND, <696.3	ND, <975.2
BERYLLIUM	ND, <5.0	ND, <9.3	ND, <11.2	ND, <5.8	ND, <17.6	ND, <38.3	ND, <52.5	ND, <89.4	ND, <67.1	ND, <139.3	ND, <195.0
CADMIUM	ND, <5.0	ND, <9.3	ND, <11.2	ND, <5.8	ND, <17.6	ND, <38.3	ND, <52.5	ND, <89.4	ND, <67.1	ND, <139.3	ND, <195.0
CHROMIUM	24.77	48.59	113.13	21.52	91.73	200.06	228.44	393.19	667.15	474.89	1094.16
COBALT	ND, <5.0	ND, <9.3	ND, <11.2	ND, <5.8	ND, <17.6	ND, <38.3	ND, <52.5	ND, <89.4	ND, <67.1	ND, <139.3	ND, <195.0
COPPER	ND, <5.0	ND, <9.3	ND, <11.2	ND, <5.8	ND, <17.6	ND, <38.3	ND, <52.5	ND, <89.4	ND, <67.1	ND, <139.3	ND, <195.0
LEAD	ND, <15.0	ND, <27.9	ND, <33.6	ND, <17.4	ND, <52.8	ND, <114.8	ND, <157.5	ND, <268.1	ND, <201.2	ND, <417.8	ND, <585.1
MANGANESE	ND, <5.0	ND, <9.3	ND, <11.2	ND, <5.8	ND, <17.6	ND, <38.3	ND, <52.5	ND, <89.4	ND, <67.1	ND, <139.3	ND, <195.0
MERCURY	ND, <1.0	ND, <1.9	ND, <2.2	ND, <1.2	ND, <3.5	ND, <7.7	ND, <10.5	ND, <17.9	ND, <13.4	ND, <27.9	ND, <39.0
NICKEL	ND, <25.0	ND, <46.5	ND, <56.0	ND, <28.9	ND, <88.0	ND, <191.3	ND, <262.6	ND, <446.8	ND, <335.3	ND, <696.3	ND, <975.2
SELENIUM	ND, <25.0	ND, <46.5	ND, <56.0	ND, <28.9	ND, <88.0	ND, <191.3	ND, <262.6	ND, <446.8	ND, <335.3	ND, <696.3	ND, <975.2

APPENDIX L

Sulfate Data

APPENDIX L-1: EMD SULFATE EMISSIONS SUMMARY

BNSF 9693

			CARB die	esel (EM-266	63-F)					On-Hwy Di	esel (EM-26	77-F)					High Sulfur, N	Ionroad diese	I (EM-2664-F	=)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	2.592	50	1.066	85.82	1,656	35.30	51.8	2.504	48	1.000	28.21	541	11.27	2.5	2.831	55	1.158	100.90	1,960	41.27	0.6
Idle	1.355	18	0.735	56.82	755	30.81	45.2	3.125	42	1.615	23.75	319	12.28	2.7	1.290	17	0.675	70.38	928	36.81	0.6
Notch 1	0.317	65	0.717	6.51	1,334	14.72	21.6	0.276	57	0.621	2.16	446	4.85	1.1	0.243	50	0.538	10.60	2,182	23.46	0.4
Notch 2	0.259	113	0.663	6.91	3,015	17.69	26.0	0.228	100	0.580	1.13	495	2.87	0.6	0.228	100	0.575	18.23	7,994	45.94	0.7
Notch 3	0.282	277	0.781	7.78	7,644	21.56	31.7	0.221	217	0.605	1.94	1,906	5.32	1.2	0.293	287	0.795	22.21	21,755	60.26	0.9
Notch 4	0.270	409	0.762	7.59	11,495	21.41	31.4	0.239	363	0.669	1.95	2,955	5.45	1.2	0.300	456	0.839	35.62	54,149	99.61	1.5
Notch 5	0.271	543	0.769	5.26	10,534	14.91	21.9	0.261	525	0.738	2.84	5,707	8.02	1.8	0.327	657	0.921	40.18	80,736	113.19	1.7
Notch 6	0.291	837	0.838	4.36	12,550	12.57	18.5	0.350	1011	1.004	3.50	10,121	10.05	2.2	0.396	1141	1.137	32.58	93,862	93.56	1.4
Notch 7	0.287	1050	0.863	4.29	15,685	12.89	18.9	0.300	1094	0.893	5.31	19,372	15.81	3.5	0.404	1478	1.210	25.14	91,962	75.29	1.2
Notch 8	0.481	2024	1.454	2.57	10,796	7.75	11.4	0.493	2074	1.478	3.77	15,879	11.32	2.5	0.587	2469	1.764	22.73	95,600	68.29	1.1

BNSF 9754

DINOF 9/3)4																				
			CARB die	esel (EM-26	63-F)					On-Hwy D	esel (EM-26	77-F)					High Sulfur, N	Nonroad diese	I (EM-2664-F	=)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	3.457	67	1.373	74.50	1,444	29.59	43.4	2.386	46	0.966	30.81	594	12.48	2.8	3.030	59	1.216	141.19	2,749	56.68	0.9
Idle	1.299	18	0.672	15.76	218	8.15	12.0	1.542	21	0.772	32.54	443	16.29	3.6	1.795	24	0.870	130.37	1,743	63.16	1.0
Notch 1	0.444	91	0.998	3.52	721	7.90	11.6	0.325	66	0.712	2.83	575	6.20	1.4	0.468	96	1.032	23.10	4,739	50.96	0.8
Notch 2	0.305	134	0.789	0.79	349	2.05	3.0	0.293	128	0.749	1.73	755	4.41	1.0	0.355	156	0.901	24.03	10,558	60.96	0.9
Notch 3	0.393	385	1.096	0.91	889	2.53	3.7	0.362	354	1.002	2.20	2,151	6.09	1.4	0.262	256	0.718	33.52	32,750	91.81	1.4
Notch 4	0.310	469	0.891	1.04	1,570	2.98	4.4	0.309	468	0.882	2.68	4,062	7.66	1.7	0.400	605	1.127	40.22	60,831	113.34	1.7
Notch 5	0.300	601	0.874	1.56	3,129	4.55	6.7	0.280	562	0.812	3.08	6,173	8.92	2.0	0.368	738	1.054	32.89	65,965	94.18	1.5
Notch 6	0.353	1017	1.054	2.64	7,603	7.88	11.6	0.339	977	1.010	6.19	17,828	18.42	4.1	0.438	1263	1.291	29.12	83,958	85.79	1.3
Notch 7	0.366	1337	1.133	3.89	14,220	12.05	17.7	0.368	1346	1.131	2.64	9,655	8.11	1.8	0.425	1556	1.299	30.75	112,582	94.01	1.5
Notch 8	0.378	1591	1.175	3.22	13,547	10.01	14.7	0.392	1652	1.214	3.43	14,461	10.62	2.4	0.432	1819	1.328	25.28	106,432	77.69	1.2

BNSF 969	16																				
			CARB die	esel (EM-266	33-F)					On-Hwy Di	esel (EM-26	77-F)					High Sulfur, N	Ionroad diese	I (EM-2664-F	=)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	1.933	37	0.781	19.93	381	8.05	11.8	2.418	46	0.996	77.27	1,470	31.82	7.1	2.337	44	0.917	150.79	2,839	59.14	0.9
Idle	0.980	13	0.510	10.35	137	5.39	7.9	1.087	15	0.566	17.18	237	8.94	2.0	1.399	19	0.731	117.60	1,597	61.43	0.9
Notch 1	0.205	42	0.462	1.08	222	2.44	3.6	0.243	50	0.543	2.55	524	5.70	1.3	0.208	43	0.473	16.78	3,469	38.12	0.6
Notch 2	0.211	92	0.544	0.85	369	2.18	3.2	0.249	109	0.641	1.27	557	3.27	0.7	0.240	105	0.607	24.18	10,577	61.14	0.9
Notch 3	0.234	229	0.645	0.75	730	2.06	3.0	0.282	276	0.771	1.71	1,676	4.68	1.0	0.276	270	0.748	35.30	34,534	95.66	1.5
Notch 4	0.245	372	0.691	0.87	1,328	2.47	3.6	0.261	396	0.733	2.55	3,876	7.18	1.6	0.350	531	0.973	51.71	78,451	143.68	2.2
Notch 5	0.244	486	0.702	1.80	3,582	5.18	7.6	0.258	515	0.738	5.37	10,727	15.37	3.4	0.339	669	0.957	57.22	112,928	161.56	2.5
Notch 6	0.202	581	0.608	2.41	6,928	7.25	10.7	0.231	666	0.695	5.90	17,004	17.75	3.9	0.295	851	0.883	48.27	139,261	144.46	2.2
Notch 7	0.215	786	0.667	2.64	9,643	8.18	12.0	0.242	886	0.748	5.64	20,645	17.44	3.9	0.262	957	0.804	12.28	44,869	37.67	0.6
Notch 8	0.213	896	0.658	2.63	11,080	8.14	12.0	0.244	1026	0.749	6.65	27,970	20.42	4.5	0.297	1249	0.906	16.05	67,501	48.95	0.8

APPENDIX L-2: GE SULFATE EMISSIONS SUMMARY

UP 9715

			CARB die	sel (EM-26	63-F)					On-Hwy Di	esel (EM-26	77-F)					High Sulfur, N	lonroad diese	el (EM-2664-	F)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	1.769	39	0.913	33.48	738	17.29	25.4	1.088	27	0.662	4.64	115	2.82	0.6	1.828	42	1.042	80.14	1,841	45.69	0.7
Low Idle	2.256	23	1.162	22.70	231	11.69	17.2	1.770	19	1.188	6.59	71	4.42	1.0	4.068	41	1.925	107.86	1,087	51.04	0.8
Idle	1.471	21	0.820	14.58	208	8.13	11.9	2.120	23	0.852	8.18	89	3.29	0.7	2.680	29	1.272	137.40	1,487	65.21	1.0
Notch 1	0.151	30	0.370	1.89	375	4.63	6.8	0.182	33	0.407	1.33	241	2.98	0.7	0.260	50	0.599	24.95	4,799	57.47	0.9
Notch 2	0.104	52	0.276	3.03	1,515	8.04	11.8	0.105	53	0.288	1.24	628	3.41	0.8	0.212	105	0.565	46.48	23,019	123.76	1.9
Notch 3	0.196	203	0.521	12.57	13,021	33.44	49.1	0.144	149	0.379	2.02	2,091	5.32	1.2	0.283	289	0.733	67.17	68,594	173.96	2.7
Notch 4	0.183	283	0.498	10.52	16,262	28.63	42.0	0.157	243	0.423	4.50	6,962	12.12	2.7	0.260	399	0.698	54.99	84,388	147.66	2.3
Notch 5	0.171	380	0.479	9.32	20,708	26.12	38.4	0.147	331	0.410	4.85	10,917	13.53	3.0	0.241	537	0.671	47.93	106,809	133.44	2.1
Notch 6	0.124	363	0.361	5.94	17,396	17.31	25.4	0.121	355	0.348	3.43	10,068	9.86	2.2	0.217	638	0.626	44.40	130,544	128.05	2.0
Notch 7	0.091	334	0.270	3.61	13,261	10.73	15.8	0.106	390	0.310	3.41	12,561	10.00	2.2	0.203	744	0.594	45.45	166,589	132.97	2.1
Notch 8	0.105	473	0.307	2.43	10,964	7.12	10.5	0.117	522	0.336	3.16	14,096	9.07	2.0	0.226	1014	0.651	45.90	205,961	132.28	2.0

UP 9724																					
			CARB die	esel (EM-26	63-F)					On-Hwy Die	esel (EM-26	577-F)					High Sulfur, N	lonroad diese	el (EM-2664-	·F)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	2.247	56	1.333	13.83	345	8.21	12.1	3.435	79	1.904	23.42	539	12.98	2.9	3.855	96	1.963	91.11	2,269	46.40	0.7
Low Idle	4.266	51	2.383	26.65	319	14.89	21.9	5.245	63	2.825	21.48	258	11.57	2.6	3.617	40	2.312	93.95	1,039	60.06	0.9
Idle	3.513	42	1.500	22.99	275	9.82	14.4	3.251	39	1.444	27.30	327	12.13	2.7	3.471	42	1.556	95.14	1,151	42.64	0.7
Notch 1	0.379	75	0.911	2.23	442	5.37	7.9	0.550	108	1.295	3.77	740	8.87	2.0	0.353	70	0.846	21.49	4,261	51.52	0.8
Notch 2	0.316	157	0.840	2.85	1,416	7.58	11.1	0.418	207	1.099	6.21	3,073	16.31	3.6	0.323	160	0.829	47.43	23,495	121.67	1.9
Notch 3	0.236	245	0.627	5.82	6,040	15.46	22.7	0.241	249	0.634	8.43	8,711	22.17	4.9	0.334	345	0.860	61.46	63,479	158.18	2.4
Notch 4	0.222	343	0.607	10.25	15,837	28.01	41.1	0.196	303	0.533	9.82	15,181	26.73	5.9	0.296	458	0.791	56.84	87,954	151.93	2.3
Notch 5	0.166	369	0.473	11.63	25,844	33.13	48.7	0.141	314	0.400	8.55	19,051	24.28	5.4	0.229	509	0.637	42.86	95,265	119.26	1.8
Notch 6	0.113	332	0.336	6.11	17,961	18.20	26.7	0.106	313	0.315	4.24	12,514	12.59	2.8	0.195	575	0.569	40.48	119,369	118.07	1.8
Notch 7	0.085	312	0.258	3.32	12,193	10.08	14.8	0.092	336	0.276	3.26	11,903	9.79	2.2	0.206	754	0.614	58.70	214,853	174.99	2.7
Notch 8	0.085	382	0.255	2.49	11,203	7.48	11.0	0.087	393	0.261	2.63	11,891	7.90	1.8	0.212	956	0.628	66.97	301,998	198.51	3.1

UP 9733																					
			CARB die	sel (EM-26	63-F)					On-Hwy Die	esel (EM-26	77-F)					High Sulfur, N	lonroad diese	el (EM-2664-	F)	
TEST	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part.,	Total Part.,	SO4,	SO4,	SO4,	% Sulfate	Total Part.,	Total Part	Total Part.,	SO4,	SO4,	SO4,	% Sulfate
NO.	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion	g/hp-hr	g/hr	g/lb fuel	mg/hp-hr	mg/hr	mg/lb fuel	Conversion
DB-2	1.531	35	0.845	13.16	301	7.27	10.7	1.793	41	0.911	10.52	241	5.35	1.2	1.696	37	0.875	71.11	1,551	36.68	0.6
Low Idle	1.718	17	0.876	5.69	56	2.90	4.3	2.338	23	1.045	10.75	106	4.80	1.1	2.340	23	1.369	90.49	889	52.94	0.8
Idle	1.687	17	0.691	13.92	140	5.70	8.4	2.463	25	0.969	12.03	122	4.73	1.1	2.864	29	1.098	136.47	1,382	52.34	0.8
Notch 1	0.194	37	0.468	0.75	143	1.81	2.7	0.253	48	0.600	1.24	235	2.94	0.7	0.264	51	0.622	18.75	3,623	44.18	0.7
Notch 2	0.136	68	0.356	0.33	166	0.87	1.3	0.185	92	0.489	0.90	445	2.37	0.5	0.215	108	0.568	34.17	17,164	90.34	1.4
Notch 3	0.124	128	0.322	0.74	768	1.93	2.8	0.133	138	0.351	1.41	1,465	3.73	0.8	0.261	270	0.682	61.36	63,474	160.29	2.5
Notch 4	0.139	215	0.375	2.47	3,822	6.66	9.8	0.124	193	0.337	2.70	4,208	7.34	1.6	0.230	357	0.619	57.01	88,485	153.35	2.4
Notch 5	0.123	273	0.345	4.93	10,943	13.83	20.3	0.117	260	0.327	3.61	8,023	10.09	2.2	0.206	459	0.570	52.18	116,266	144.43	2.2
Notch 6	0.081	240	0.239	2.79	8,272	8.24	12.1	0.093	275	0.272	2.81	8,297	8.21	1.8	0.170	500	0.490	43.39	127,621	125.00	1.9
Notch 7	0.074	273	0.221	2.28	8,423	6.81	10.0	0.084	308	0.248	2.65	9,716	7.83	1.7	0.155	567	0.453	25.87	94,618	75.63	1.2
Notch 8	0.101	453	0.295	1.75	7,865	5.11	7.5	0.117	527	0.341	2.33	10,511	6.79	1.5	0.188	847	0.543	46.50	209,513	134.39	2.1

APPENDIX L-3: EPA LINE-HAUL DUTY-CYCLE WEIGHTED EMD SULFATE EMISSIONS SUMMARY

BNSF 9	9693	CARB D	iesel	On-Highw	ay Diesel	High-Sulfu	r, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	31.5%	6.1	521.5	6.1	170.3	6.1	618
Idle	19.0%	2.6	143.4	2.6	60.7	2.6	176
Notch 1	6.5%	13.3	86.7	13.3	29.0	13.3	142
Notch 2	6.5%	28.4	196.0	28.5	32.2	28.5	520
Notch 3	5.2%	51.0	397.5	51.0	99.1	51.0	1,131
Notch 4	4.4%	66.8	505.8	66.9	130.0	66.9	2,383
Notch 5	3.8%	76.2	400.3	76.3	216.9	76.3	3,068
Notch 6	3.9%	112.4	489.4	112.7	394.7	112.4	3,661
Notch 7	3.0%	109.6	470.6	109.6	581.1	109.7	2,759
Notch 8	16.2%	682.2	1749.0	681.7	2572.4	681.9	15,487
	Total	1148.6	4960.1	1148.6	4286.4	1148.4	29,944
EPA Line-	Haul Duty C	ycle	4.32		3.73		26
Weighted	Sulfate Emis	ssions, mg/h _l	o-hr				

BNSF 9	9754	CARB D	iesel	On-Highw	ay Diesel	High-Sulfu	, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	31.5%	6.1	454.83	6.0	187.08	6.1	866
Idle	19.0%	2.6	41.50	2.6	84.21	2.6	331
Notch 1	6.5%	13.3	46.85	13.3	37.36	13.3	308
Notch 2			22.68	28.5	49.07	28.5	686
Notch 3	5.2%	50.9	46.22	50.9	111.84	50.9	1,703
Notch 4			69.06	66.7	178.75	66.6	2,677
Notch 5	3.8%	76.2	118.89	76.2	234.56	76.2	2,507
Notch 6	3.9%	112.5	296.53	112.4	695.29	112.4	3,274
Notch 7	3.0%	109.6	426.60	109.7	289.66	109.7	3,377
Notch 8	16.2%	682.3	2194.62	682.2	2342.61	681.8	17,242
	Total 114		3717.8	1148.5	4210.4	1148.1	32,971
EPA Line-	Haul Duty C	ycle	3.24	•	3.67	•	29
Weighted	Sulfate Emis	ssions, mg/h	p-hr				

BNSF 9	9696	CARB D	iesel	On-Highw	ay Diesel	High-Sulfu	r, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	31.5%	6.0	120.16	6.0	463.04	6.0	894
Idle	19.0%	2.5	26.10	2.5	45.03	2.5	303
Notch 1	6.5%	13.3	14.44	13.3	34.09	13.3	225
Notch 2	6.5%	28.5	23.99	28.5	36.18	28.4	688
Notch 3			37.96	50.9	87.18	51.0	1,796
Notch 4	4.4%	66.8	58.45	66.8	170.54	66.8	3,452
Notch 5	3.8%	75.6	136.12	75.8	407.62	74.9	4,291
Notch 6	3.9%	112.4	270.20	112.5	663.16	112.4	5,431
Notch 7	3.0%	109.7	289.30	109.7	619.35	109.7	1,346
Notch 8	16.2%	681.6	1795.01	681.9	4531.21	681.7	10,935
_	Total	1147.4	2771.7	1147.9	7057.4	1146.8	29,362
EPA Line-	Haul Duty C	ycle	2.42		6.15	•	26
Weighted	Sulfate Emis	ssions, mg/h	o-hr				

APPENDIX L-4: EPA LINE-HAUL DUTY-CYCLE WEIGHTED GE SULFATE EMISSIONS SUMMARY

UP 971	5	CARB D	iesel	On-Highw	ay Diesel	High-Sulfu	r, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	12.5%	2.8	92.3	3.1	14.4	2.9	230
Low Idle	19.0%	1.9	44.0	2.1	13.4	1.9	207
Idle	19.0%	2.7	39.6	2.1	16.9	2.1	282
Notch 1	6.5%	12.7	24.4	11.6	15.7	12.6	312
Notch 2	6.5%	32.7	98.5	33.0	40.8	32.2	1,496
Notch 3	5.2%	53.9	677.1	53.8	108.7	53.1	3,567
Notch 4	4.4%	68.3	715.5	68.2	306.3	67.7	3,713
Notch 5	3.8%	84.4	786.9	84.6	414.9	84.5	4,059
Notch 6	3.9%	114.7	678.5	114.7	392.7	114.7	5,091
Notch 7	3.0%	109.9	397.8	110.0	376.8	110.0	4,998
Notch 8	16.2%	727.2	1776.1	725.4	2283.5	726.4	33,366
	Total	1211.1	5330.6	1208.5	3984.1	1208.0	57,321
EPA Line-	Haul Duty C	ycle	4.40	_	3.30	_	47
Weighted	Sulfate Emis	ssions, mg/h _l	o-hr				

UP 972	4	CARB D	iesel	On-Highw	ay Diesel	High-Sulfu	, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	12.5%	3.1	43.09	2.9	67.32	3.1	284
Low Idle	19.0%	2.3	60.53	2.3	49.02	2.1	197
Idle	19.0%	2.3	52.22	2.3	62.22	2.3	219
Notch 1	6.5%	12.8	28.73	12.8	48.10	12.9	277
Notch 2	6.5%	32.3	92.05	32.2	199.74	32.2	1,527
Notch 3	5.2%	53.9	314.09	53.7	452.99	53.8	3,301
Notch 4	4.4%	68.1	696.83	68.2	667.96	68.2	3,870
Notch 5	3.8%	84.6	982.07	84.5	723.94	84.6	3,620
Notch 6	3.9%	114.8	700.46	114.7	488.04	114.7	4,655
Notch 7	3.0%	109.9	365.80	109.9	357.08	109.8	6,446
Notch 8	16.2%	729.2	1814.87	727.4	1926.32	729.2	48,924
	Total	1213.3	5150.8	1210.7	5042.7	1213.0	73,319
EPA Line-I	Haul Duty C	ycle	4.25		4.17		60
Weighted 9	Sulfate Emis	ssions, mg/h	o-hr				

UP 973	3	CARB D	iesel	On-Highw	ay Diesel	High-Sulfur	, Nonroad
	WF	wt. bhp	wt. SO4	wt. bhp	wt. SO4	wt. bhp	wt. SO4
DB-2	12.5%	2.9	37.60	2.9	30.07	2.8	194
Low Idle	19.0%	1.9	10.69	1.9	20.08	1.9	169
ldle	19.0%	1.9	26.66	1.9	23.20	1.9	263
Notch 1	6.5%	12.4	9.28	12.4	15.29	12.5	235
Notch 2	6.5% 32.4		10.76	32.3	28.95	32.4	1,116
Notch 3	5.2%	54.0	39.95	54.0	76.19	53.8	3,301
Notch 4	4.4%	68.2	168.17	68.2	185.15	68.2	3,893
Notch 5	3.8%	84.4	415.82	84.5	304.87	84.5	4,418
Notch 6	3.9%	114.6	322.59	114.7	323.60	114.6	4,977
Notch 7	3.0%	110.0	252.70	110.0	291.48	109.9	2,839
Notch 8	16.2%	727.5	1274.18	730.0	1702.81	728.4	33,941
	Total	1210.0	2568.4	1212.6	3001.7	1210.9	55,346
EPA Line-I	Haul Duty C	ycle	2.12		2.48	_	46

EPA Line-Haul Duty Cycle 2.12 2.48 46
Weighted Sulfate Emissions, mg/hp-hr

APPENDIX M

SOF of Particulate Data

Appendix M: Soluble Organic Fraction of PM for the EMD Locomotives

BNSF 9693

		CARB d	liesel (EM-	2663-F)			On-Hwy	Diesel (E	M-2677-F)		Hig	gh Sulfur, N	lonroad die	esel (EM-26	64-F)
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	1.711	33.0	68.9	1178.9	22,737	1.605	31.0	63.3	1016.0	19,623	1.825	35.0	72.0	1314.0	25,200
Idle	1.091	15.0	62.6	683.0	9,390	1.263	17.0	63.9	807.1	10,863	1.249	17.0	57.9	723.2	9,843
Notch 1	0.265	54.0	67.3	178.3	36,342	0.242	50.0	58.1	140.6	29,050	0.239	49.0	60.1	143.6	29,449
Notch 2	0.242	106.0	73.4	177.6	77,804	0.206	90.0	62.6	129.0	56,340	0.228	100.0	63.5	144.8	63,500
Notch 3	0.247	243.0	79.8	197.1	193,914	0.220	216.0	79.1	174.0	170,856	0.270	264.0	77.0	207.9	203,280
Notch 4	0.254	387.0	68.0	172.7	263,160	0.235	356.0	67.6	158.9	240,656	0.297	452.0	69.8	207.3	315,496
Notch 5	0.268	538.0	55.8	149.5	300,204	0.250	502.0	55.0	137.5	276,100	0.329	660.0	63.4	208.6	418,440
Notch 6	0.336	968.0	42.5	142.8	411,400	0.309	890.0	47.7	147.4	424,530	0.388	1118.0	52.8	204.9	590,304
Notch 7	0.280	1023.0	64.6	180.9	660,858	0.306	1119.0	70.5	215.7	788,895	0.336	1228.0	67.5	226.8	828,900
Notch 8	0.507	2135.0	83.1	421.3	1,774,185	0.519	2184.0	84.2	437.0	1,838,928	0.551	2318.0	82.6	455.1	1,914,668

BNSF 9754

		CARB o	liesel (EM-	·2663-F)			On-Hwy	y Diesel (E	M-2677-F)		Hig	gh Sulfur, N	Nonroad die	esel (EM-26	64-F)
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	2.719	52.0	75.2	2044.7	39,104	2.222	43.0	71.1	1579.8	30,573	2.328	45.0	68.5	1594.7	30,825
Idle	1.461	20.0	67.8	990.6	13,560	1.535	21.0	62.1	953.2	13,041	1.492	20.0	65.8	981.7	13,160
Notch 1	0.284	58.0	67.6	192.0	39,208	0.230	47.0	72.2	166.1	33,934	0.270	55.0	62.8	169.6	34,540
Notch 2	0.231	101.0	70.6	163.1	71,306	0.234	103.0	72.5	169.7	74,675	0.264	116.0	66.5	175.6	77,140
Notch 3	0.297	290.0	82.5	245.0	239,250	0.308	302.0	86.4	266.1	260,928	0.322	315.0	77.8	250.5	245,070
Notch 4	0.305	462.0	74.8	228.1	345,576	0.307	466.0	83.7	257.0	390,042	0.347	525.0	66.6	231.1	349,650
Notch 5	0.283	567.0	61.6	174.3	349,272	0.282	566.0	78.3	220.8	443,178	0.400	801.0	60.0	240.0	480,600
Notch 6	0.333	958.0	56.8	189.1	544,144	0.311	896.0	75.5	234.8	676,480	0.435	1247.0	55.7	242.3	694,579
Notch 7	0.324	1185.0	71.9	233.0	852,015	0.352	1287.0	84.6	297.8	1,088,802	0.352	1284.0	67.3	236.9	864,132
Notch 8	0.344	1447.0	74.6	256.6	1,079,462	0.364	1532.0	87.1	317.0	1,334,372	0.352	1488.0	71.8	252.7	1,068,384

BNSF 9696

		CARB d	liesel (EM-	-2663-F)			On-Hwy	/ Diesel (E	M-2677-F)		Hig	gh Sulfur, N	Nonroad die	esel (EM-26	64-F)
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	1.933	37.0	71.6	1384.0	26,492	2.418	46.0	66.9	1617.6	30,774	2.337	44.0	68.2	1593.8	30,008
Idle	0.980	13.0	73.6	721.3	9,568	1.087	15.0	68.5	744.6	10,275	1.399	19.0	67.5	944.3	12,825
Notch 1	0.205	42.0	72.1	147.8	30,282	0.243	50.0	73.4	178.4	36,700	0.208	43.0	69.7	145.0	29,971
Notch 2	0.211	92.0	77.7	163.9	71,484	0.249	109.0	77.4	192.7	84,366	0.240	105.0	67.1	161.0	70,455
Notch 3	0.234	229.0	80.6	188.6	184,574	0.282	276.0	80.3	226.4	221,628	0.276	270.0	75.6	208.7	204,120
Notch 4	0.245	372.0	56.3	137.9	209,436	0.261	396.0	60.8	158.7	240,768	0.350	531.0	62.3	218.1	330,813
Notch 5	0.244	486.0	47.8	116.6	232,308	0.258	515.0	48.1	124.1	247,715	0.339	669.0	55.4	187.8	370,626
Notch 6	0.202	581.0	64.4	130.1	374,164	0.231	666.0	70.0	161.7	466,200	0.295	851.0	72.2	213.0	614,422
Notch 7	0.215	786.0	80.6	173.3	633,516	0.242	886.0	83.6	202.3	740,696	0.262	957.0	78.8	206.5	754,116
Notch 8	0.213	896.0	80.1	170.6	717,696	0.244	1026.0	79.4	193.7	814,644	0.297	1249.0	83.1	246.8	1,037,919

Appendix M: Soluble Organic Fraction of PM for the EMD Locomotives EPA Line-Haul Duty-Cycle Weighted SOF

		2663 (S	ept. 17)	2677 (Sept. 16)	2664 (Sept. 17)
BNSF 9693		wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF
DB-2	31.5%	6.1	7162	6.1	6181	6.1	7938
Idle	19.0%	2.6	1784	2.6	2064	2.6	1870
Notch	n 1 6.5%	13.3	2362	13.3	1888	13.4	1914
Notch	n 2 6.5%	28.4	5057	28.4	3662	28.5	4128
Notch	າ 3 5.2%	51.0	10084	50.9	8885	50.9	10571
Notch	1 4 4.4%	66.8	11579	66.8	10589	66.8	13882
Notch	າ 5 3.8%	76.2	11408	76.2	10492	76.3	15901
Notch	n 6 3.9%	112.4	16045	112.4	16557	112.5	23022
Notch	n 7 3.0%	109.6	19826	109.7	23667	109.7	24867
Notch	n 8 16.2%	681.6	287418	682.0	297906	681.8	310176
	Total	1148.0	372724.4	1148.4	381890.6	1148.5	414268.0
EPA	Line-Haul Duty	Cycle	325		333		361
	hted SOF Emis						
		2663 (Oct. 5)	2677	(Oct. 6)	2664	(Oct. 5)
BNSF 9754		wt. bhp	wt. SOF	wt. bhp	`wt. SOF	wt. bhp	`wt. SOF
DB-2	31.5%	6.0	12318	6.0	9630	6.0	9710
Idle	19.0%	2.6	2576	2.6	2478	2.6	2500
Notch	n 1 6.5%	13.3	2549	13.3	2206	13.3	2245
Notch		28.4	4635	28.5	4854	28.5	5014
Notch	າ 3 5.2%	50.9	12441	51.0	13568	51.0	12744
Notch	n 4 4.4%	66.7	15205	66.7	17162	66.6	15385
Notch		76.2	13272	76.2	16841	76.1	18263
Notch	n 6 3.9%	112.3	21222	112.4	26383	111.8	27089
Notch	n 7 3.0%	109.6	25560	109.7	32664	109.5	25924
Notch		681.7	174873	682.0	216168	685.0	173078
	Total	1147.7	284651.2	1148.3	341953.8	1150.4	291951.3
EPA	Line-Haul Duty	Cycle	248		298		254
Weig	hted SOF Emis	sions					
		2663 (N	Mar. 11)	2677 (Mar. 10)	2664 (Mar. 12)
BNSF 9696		wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF
DB-2	31.5%	6.0	8345	6.0	9694	6.0	9453
Idle	19.0%	2.5	1818	2.5	1952	2.5	2437
Notch		13.3	1968	13.3	2386	13.3	1948
Notch		28.5	4646	28.5	5484	28.4	4580
Notch		51.0	9598	50.9	11525	51.0	10614
Notch	n 4 4.4%	66.8	9215	66.8	10594	66.8	14556
Notch	n 5 3.8%	75.6	8828	75.8	9413	74.9	14084
Notch	n 6 3.9%	112.4	14592	112.5	18182	112.4	23962
Notch	n 7 3.0%	109.7	19005	109.7	22221	109.7	22623
Notch	n 8 16.2%	681.6	116267	681.9	131972	681.7	168143
	Total	1147.4	194283.1	1147.9	223422.0	1146.8	272399.6
	Line-Haul Duty		169		195		238
Weig	hted SOF Emis	sions					

Appendix M: Soluble Organic Fraction of PM for the GE Locomotives

	 9	 	 	

UP 9715																				
		CARB d	iesel (EM-	2663-F)			On-Hw	Diesel (E	M-2677-F)		Hiç	h Sulfur, N	onroad die	sel (EM-26	64-F)		0.3% Sulfui	Diesel (E	M-2708-F)	
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	0.931	30.0	49.3	459.0	14,790	1.284	32.0	56.1	720.3	17,952	1.126	37.0	59.1	665.5	21,867	1.068	35.0	53.7	573.5	18,795
Low Idle	1.707	22.0	45.1	769.9	9,922	2.145	24.0	52.0	1115.4	12,480	3.150	35.0	68.6	2160.9	24,010	2.916	32.0	59.4	1732.1	19,008
Idle	1.625	19.0	51.7	840.1	9,823	2.087	23.0	49.9	1041.4	11,477	2.131	26.0	59.3	1263.7	15,418	2.210	24.0	60.5	1337.1	14,520
Notch 1	0.139	27.0	78.6	109.3	21,222	0.126	25.0	83.3	105.0	20,825	0.161	31.0	74.5	119.9	23,095	0.122	24.0	72.7	88.7	17,448
Notch 2	0.111	55.0	77.5	86.0	42,625	0.098	49.0	74.8	73.3	36,652	0.136	67.0	71.4	97.1	47,838	0.102	51.0	69.1	70.5	35,241
Notch 3	0.170	176.0	59.8	101.7	105,248	0.141	146.0	65.4	92.2	95,484	0.194	202.0	70.8	137.4	143,016	0.152	156.0	56.2	85.4	87,672
Notch 4	0.194	300.0	47.1	91.4	141,300	0.161	249.0	38.8	62.5	96,612	0.213	330.0	55.8	118.9	184,140	0.153	238.0	38.5	58.9	91,630
Notch 5	0.166	368.0	43.7	72.5	160,816	0.168	373.0	44.3	74.4	165,239	0.209	465.0	54.1	113.1	251,565	0.160	356.0	51.1	81.8	181,916
Notch 6	0.120	353.0	43.7	52.4	154,261	0.139	408.0	42.7	59.4	174,216	0.182	536.0	54.5	99.2	292,120	0.145	427.0	43.0	62.4	183,610
Notch 7	0.096	351.0	43.5	41.8	152,685	0.119	436.0	45.7	54.4	199,252	0.182	665.0	59.4	108.1	395,010	0.130	488.0	45.5	59.2	222,040
Notch 8	0.110	492.0	36.0	39.6	177,120	0.124	558.0	36.0	44.6	200,880	0.189	849.0	53.9	101.9	457,611	0.140	630.0	46.1	64.5	290,430

UP 9724

UP 9724																				
		CARB o	diesel (EM-	-2663-F)			On-Hwy	/ Diesel (E	M-2677-F)		Hi	gh Sulfur, N	lonroad die	sel (EM-26	64-F)		0.3% Sulfu	r Diesel (E	M-2708-F)	
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	1.730	62.0	67.7	1171.2	41,974	2.899	75.0	70.0	2029.3	52,500	2.782	72.0	68.5	1905.67	49,320	4.001	100.0	77.6	3104.8	77,600
Low Idle	2.314	49.0	46.8	1083.0	22,932	3.637	51.0	46.9	1705.8	23,919	4.616	60.0	64.9	2995.78	38,940	5.740	75.0	62.5	3587.5	46,875
Idle	1.467	31.0	52.7	773.1	16,337	2.349	33.0	59.6	1400.0	19,668	4.403	53.0	63.1	2778.29	33,443	4.529	54.0	63.5	2875.9	34,290
Notch 1	0.286	57.0	84.3	241.1	48,051	0.447	88.0	87.6	391.6	77,088	0.453	88.0	86.1	390.03	75,768	0.622	121.0	89.4	556.1	108,174
Notch 2	0.263	131.0	71.5	188.0	93,665	0.330	165.0	82.7	272.9	136,455	0.336	167.0	77.6	260.74	129,592	0.421	209.0	81.8	344.4	170,962
Notch 3	0.248	256.0	51.5	127.7	131,840	0.215	224.0	56.3	121.0	126,112	0.252	261.0	64.0	161.28	167,040	0.299	310.0	62.7	187.5	194,370
Notch 4	0.218	339.0	31.1	67.8	105,429	0.183	284.0	25.7	47.0	72,988	0.229	355.0	49.4	113.13	175,370	0.234	363.0	47.2	110.4	171,336
Notch 5	0.152	338.0	39.6	60.2	133,848	0.149	332.0	37.6	56.0	124,832	0.186	415.0	56.7	105.46	235,305	0.185	411.0	50.0	92.5	205,500
Notch 6	0.127	374.0	41.7	53.0	155,958	0.123	362.0	38.7	47.6	140,094	0.171	503.0	57.1	97.64	287,213	0.155	456.0	48.8	75.6	222,528
Notch 7	0.100	368.0	46.4	46.4	170,752	0.105	382.0	45.4	47.7	173,428	0.162	592.0	62.0	100.44	367,040	0.136	498.0	51.8	70.4	257,964
Notch 8	0.099	445.0	44.7	44.3	198,915	0.100	450.0	44.5	44.5	200,250	0.189	850.0	67.0	126.63	569,500	0.142	640.0	58.8	83.5	376,320

UP 9733

01 3700																				
	CARB diesel (EM-2663-F)					On-Hwy Diesel (EM-2677-F)				High Sulfur, Nonroad diesel (EM-2664-F)				0.3% Sulfur Diesel (EM-2708-F)						
TEST	Total Part.,	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,	Total Part.	Total Part.	%	SOF,	SOF,
NO.	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr	g/hp-hr	g/hr	SOF	mg/hp-hr	mg/hr
DB-2	1.531	35.0	66.2	1013.5	23,170	1.793	41.0	68.7	1231.8	28,167	1.696	37.0	67.4	1143.10	24,938	nd	nd	nd	nd	nd
Low Idle	1.718	17.0	61.1	1049.7	10,387	2.338	23.0	63.5	1484.6	14,605	2.340	23.0	74.5	1743.30	17,135	nd	nd	nd	nd	nd
Idle	1.687	17.0	62.3	1051.0	10,591	2.463	25.0	71.6	1763.5	17,900	2.864	29.0	66.4	1901.70	19,256	nd	nd	nd	nd	nd
Notch 1	0.194	37.0	85.5	165.9	31,635	0.253	48.0	88.5	223.9	42,480	0.264	51.0	86.8	229.15	44,268	nd	nd	nd	nd	nd
Notch 2	0.136	68.0	83.4	113.4	56,712	0.185	92.0	89.1	164.8	81,972	0.215	108.0	86.9	186.84	93,852	nd	nd	nd	nd	nd
Notch 3	0.124	128.0	66.8	82.8	85,504	0.133	138.0	66.5	88.4	91,770	0.261	270.0	81.3	212.19	219,510	nd	nd	nd	nd	nd
Notch 4	0.139	215.0	34.1	47.4	73,315	0.124	193.0	42.5	52.7	82,025	0.230	357.0	69.6	160.08	248,472	nd	nd	nd	nd	nd
Notch 5	0.123	273.0	51.0	62.7	139,230	0.117	260.0	50.2	58.7	130,520	0.206	459.0	75.4	155.32	346,086	nd	nd	nd	nd	nd
Notch 6	0.081	240.0	36.8	29.8	88,320	0.093	275.0	42.8	39.8	117,700	0.170	500.0	63.6	108.12	318,000	nd	nd	nd	nd	nd
Notch 7	0.074	273.0	40.1	29.7	109,473	0.084	308.0	36.0	30.2	110,880	0.155	567.0	62.4	96.72	353,808	nd	nd	nd	nd	nd
Notch 8	0.101	453.0	29.2	29.5	132,276	0.117	527.0	23.7	27.7	124,899	0.188	847.0	53.6	100.77	453,992	nd	nd	nd	nd	nd

Appendix M: SOF Summary for GE Locomotives

UP 9715		2663 (0		,	Oct. 27)	,	(Oct. 27)	2708 (Oct. 30)					
		wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF				
DB-2	12.5%	4.0	1849	3.1	2244	4.1	2733	4.1	2,349				
Low Idle	19.0%	2.5	1885	2.1	2371	2.1	4562	2.1	3,612				
ldle	19.0%	2.3	1866	2.1	2181	2.3	2929	2.1	2,759				
Notch 1	6.5%	12.5	1379	12.8	1354	12.7	1501	12.8	1,134				
Notch 2	6.5%	32.2	2771	32.3	2382	32.4	3109	32.6	2,291				
Notch 3	5.2%	53.9	5473	53.8	4965	54.2	7437	53.2	4,559				
Notch 4	4.4%	68.2	68.2 6217		4251	68.2	8102	68.2	4,032				
Notch 5	3.8%	84.5	6111	84.5	6279	84.5	9559	84.5	6,913				
Notch 6	3.9%	114.6	6016	114.7	6794	114.6	11393	114.7	7,161				
Notch 7	3.0%	110.0	4581	110.0	5978	109.9	11850	112.3	6,661				
Notch 8	16.2%	727.2	28693	728.2	32543	727.9	74133	727.9	47,050				
	Total	1211.8	66841.6	1211.9	71341.6	1212.8	137309.8	1214.6	88,520				
EPA Line-	Haul Duty	Cycle	55		59		113		73				
Weighted SOF Emissions													
UP 9724		2663 (N		,	Nov. 29)	,	Nov. 30)	`	lov. 30)				
		wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF				
DB-2	12.5%	4.5	5247	3.3	6563	3.3	6165	3.1	9,700				
Low Idle	19.0%	4.0	4357	2.7	4545	2.5	7399	2.5	8,906				
ldle	19.0%	4.0	3104	2.7	3737	2.3	6354	2.3	6,515				
Notch 1	6.5%	12.9	3123	12.7	5011	12.6	4925	12.7	7,031				
Notch 2	6.5%	32.4	6088	32.5	8870	32.4	8423	32.2	11,113				
Notch 3	5.2%	53.7	6856	54.1	6558	53.8	8686	53.9	10,107				
Notch 4	4.4%	68.3	4639	68.2	3211	68.1	7716	68.1	7,539				
Notch 5	3.8%	84.4	5086	84.5	4744	84.6	8942	84.4	7,809				
Notch 6	3.9%	114.6	6082	114.7	5464	114.7	11201	114.7	8,679				
Notch 7	3.0%	109.9	5123	109.8	5203	109.9	11011	109.8	7,739				
Notch 8	16.2%	728.7	32224	728.8	32441	729.0	92259	728.8	60,964				
	Total	1217.4	81929.3 67	1214.0	86344.2 71	1213.1	173081.6	1212.6	146,102				
	Haul Duty			143		120							
Weighted	SOF Emiss	sions											
UP 9733		2663 (N	/lav 18)	2677 (May 19)	2664 (May 21)	2708 (May 20)					
01 0700		wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF	wt. bhp	wt. SOF				
DB-2	12.5%	2.9	2896	2.9	3521	2.8	3117	W. Drip	nd				
Low Idle	19.0%	1.9	1974	1.9	2775	1.9	3256		nd				
Idle	19.0%	1.9	2012	1.9	3401	1.9	3659		nd				
Notch 1	6.5%	12.4	2056	12.4	2761	12.5	2877		nd				
Notch 2	6.5%	32.4	3686	32.3	5328	32.4	6100		nd				
Notch 3	5.2%	54.0	4446	54.0	4772	53.8	11415		nd				
Notch 4	4.4%	68.2	3226	68.2	3609	68.2	10933		nd				
Notch 5	3.8%	84.4	5291	84.5	4960	84.5	13151		nd				
Notch 6	3.9%	114.6	3444	114.7	4590	114.6	12402		nd				
Notch 7	3.0%	110.0	3284	110.0	3326	109.9	10614		nd				
Notch 8	16.2%	727.5	21429	730.0	20234	728.4	73547		nd				
. 10.011 0	Total	1210.0	53744.8	1212.6	59277.4	1210.9	151070.8	1212.6	nd				
EPA Line-			44		49		125		nd				
	EPA Line-Haul Duty Cycle 44 49 125 nd Weighted SOF Emissions												

APPENDIX N-1

DDC Series 60 Transient Test Data

CARB Locomotive Fuel Effects Study

DDC 12.7L Series 60, S/N 6RE001123

			BS Emissio	ns (g/hp-hr)		BSFC
Test	Fuel	HC	СО	NOx	PM	(lb/hp-hr)
CARB-HOT-1	CARB	0.098	2.311	4.286	0.205	0.378
CARB-HOT-2	CARB	0.094	2.253	4.455	0.205	0.379
CARB-HOT-3	CARB	0.109	2.225	4.350	0.198	0.372
CARB-HOT-4	CARB	0.084	2.255	4.373	0.197	0.376
Average		0.096	2.261	4.366	0.201	0.376
COV		11%	2%	2%	2%	1%
ONHWY-HOT-1	ONHWY	0.117	2.356	4.609	0.209	0.368
ONHWY-HOT-2	ONHWY	0.121	2.365	4.591	0.206	0.373
ONHWY-HOT-3	ONHWY	0.124	2.481	4.645	0.213	0.376
ONHWY-HOT-4	ONHWY	0.111	2.411	4.580	0.210	0.375
Average		0.118	2.403	4.606	0.210	0.373
COV		5%	2%	1%	1%	1%
NONRD-HOT-1	NONRD	0.105	2.567	4.756	0.272	0.376
NONRD-HOT-2	NONRD	0.110	2.510	4.677	0.276	0.372
NONRD-HOT-3	NONRD	0.114	2.520	4.838	0.252	0.372
NONRD-HOT-4	NONRD	0.097	2.441	4.777	0.256	0.371
Average		0.107	2.510	4.762	0.264	0.373
COV		7%	2%	1%	4%	1%
carb vs nonroad		-9.6%	-9.9%	-8.3%	-23.8%	0.9%

carb vs nonroad	-9.6%	-9.9%	-8.3%	-23.8%	0.9%
on-hwy vs nonroad	11.0%	-4.2%	-3.3%	-20.6%	0.1%
carb vs on-hwy	-18.6%	-5.9%	-5.2%	-3.9%	0.9%

Updated 30July99 sgf

 Engine Model:
 91 DDC Series 60
 Test No.: CARB-HOT-1
 DIESEL CARB, EM-2663-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 03/30/1999 Time:
 HCR: 1.876 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.136 C= 0.864 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Mass Emissions

9.35 lb

2.415

57.131

5.069

13.324

105.942

grams

grams

grams

grams

kg

4.24 kg

HС

CO

NOx

CO2

Fuel

Particulate

Ambient/Test Cell Conditions							Sample Flows	•		
Barometer:	2	29.26	in Hg	99.1	kPa			scfm		scmm
Engine Inlet Air							Blower 1 Rate:	3,078	3.2	87.18
Temperatur	e: 7	74.0	°F	23.3	°C		Blower 2 Rate:	(0.0	0.00
Dew Point:	Ę	59.2	°F	15.1	°C		90 mm System:			
Abs. Humid	ity:	77.1	gr/lb	11.0	a/ka		Gas Meter 1:	1.	96	0.06
Rel. Humidi	•	60	%		3 3		Gas Meter 2:	_	75	0.11
Dilution Air:	٠,٠ ٠		,0				Sample Rate		79	0.05
Temperature	e: 7	75.0	°F	23.9	°C		Total Flow Rate:	3,080.	04	87.23
Abs. Humidi	ity 5	58.8	gr/lb	8.4	g/kg			Particulate D	ata	
Rel. Humidit	ty: 4	44	%		0 0		Filter Number:	2188.0-1085 (p		
	•						Weight Gain:	2100.0 1005 (2.949	ma
Measu	red Gas	eous D) ata				Sample Multiplie	er:	1.719	3
	Meter	Range	Conc	entrati	ion					
HC Sample	n/a			5.28	ppm			Correction Fa		
HC Bckgrd	n/a			3.00	ppm		NOx Humidity C			1.005
CO Sample						'- \				
•	29.9	2		29.02	ppm	(Dry)	Dry-to-Wet CF, S			0.982
CO B ck grd	0.4	2 2		29.02 0.39	ppm ppm		Dry-to-Wet CF, I			0.987
CO B ck grd NOx Sample	0.4 n/a	2		0.39 32.17						
CO Bckgrd NOx Sample NOx Bckgrd	0.4 n/a 0.2	2		0.39 32.17 0.20	ppm ppm ppm	(Dry)	Dry-to-Wet CF, EDilution Factor:	Bckgrd: Test Cycle		0.987
CO Bckgrd NOx Sample NOx Bckgrd CO2 Sample	0.4 n/a 0.2 48.2	2 2 1	0	0.39 32.17 0.20 0.4573	ppm ppm ppm %		Dry-to-Wet CF, EDilution Factor:	Bckgrd: Test Cycle 1,206.60	Data sec	0.987 29.10
CO Bckgrd NOx Sample NOx Bckgrd	0.4 n/a 0.2	2	0	0.39 32.17 0.20	ppm ppm ppm	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work:	Test Cycle 1,206.60 24.72	Data sec hp-hr	0.987 29.10 18.43 kW-hr
CO Bckgrd NOx Sample NOx Bckgrd CO2 Sample	0.4 n/a 0.2 48.2	2 2 1	0	0.39 32.17 0.20 0.4573	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work: Reference Work	Test Cycle 1,206.60 24.72 24.83	Data sec hp-hr hp-hr	0.987 29.10 18.43 kW-hr 18.52 kW-hr
CO Bckgrd NOx Sample NOx Bckgrd CO2 Sample CO2 Bckgrd	0.4 n/a 0.2 48.2 4.8	2 1 1	0	0.39 32.17 0.20 0.4573	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work:	Test Cycle 1,206.60 24.72 24.83	Data sec hp-hr hp-hr	0.987 29.10 18.43 kW-hr
CO Bckgrd NOx Sample NOx Bckgrd CO2 Sample	0.4 n/a 0.2 48.2 4.8	2 1 1	0 0 ons	0.39 32.17 0.20 0.4573 0.0436	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work: Reference Work Total Volume (V	Test Cycle 1,206.60 24.72 24.83 mix): 61,939.5	Data sec hp-hr hp-hr scf	0.987 29.10 18.43 kW-hr 18.52 kW-hr 1,754.16 scm
CO B ck grd NOx Sample NOx Bckgrd CO2 Sample CO2 Bckgrd	0.4 n/a 0.2 48.2 4.8	2 1 1	0 0 ons ppm	0.39 32.17 0.20 0.4573 0.0436	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work: Reference Work Total Volume (V	Test Cycle 1,206.60 24.72 24.83 mix): 61,939.5	Data sec hp-hr hp-hr scf	0.987 29.10 18.43 kW-hr 18.52 kW-hr 1,754.16 scm
CO B ck grd NOx Sample NOx Bckgrd CO2 Sample CO2 Bckgrd Correcte HC	0.4 n/a 0.2 48.2 4.8	2 1 1 entrati 2.38	0 0 ons	0.39 32.17 0.20 0.4573 0.0436	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work: Reference Work Total Volume (Vine) Brak BSHC (Cell)	Test Cycle 1,206.60 24.72 24.83 mix): 61,939.5 xe-Specific Emi 0.098 g/hp-h	Data sec hp-hr hp-hr scf ssion R	0.987 29.10 18.43 kW-hr 18.52 kW-hr 1,754.16 scm esults 0.131 g/kW-hr
CO Bckgrd NOx Sample NOx Bckgrd CO2 Sample CO2 Bckgrd Correcte HC CO	0.4 n/a 0.2 48.2 4.8	2 1 1 entrati 2.38 27.98	0 0 ons ppm ppm	0.39 32.17 0.20 0.4573 0.0436	ppm ppm ppm %	(Dry)	Dry-to-Wet CF, EDilution Factor: Sample Time: Work: Reference Work Total Volume (V	Test Cycle 1,206.60 24.72 24.83 mix): 61,939.5	Data sec hp-hr hp-hr scf ssion R	0.987 29.10 18.43 kW-hr 18.52 kW-hr 1,754.16 scm

CO2

BSFC

539.0 g/hp-hr

0.378 lb/hp-hr

722.81 g/kW-hr

0.230 kg/kW-hr

Analyzed: 03/30/1999 12:51 Page 1 of 1

Engine Model: 91 DDC Series 60 Test No.: CARB-HOT-2 DIESEL CARB, EM-2663-F Engine Desc.: 12.7 L (775 CID) 6 Date: 03/30/1999 Time: 10:25 HCR: 1.876 FID Resp: 1.00 Engine Cycle: Diesel Program HDT: 4.04-R H= 0.136 C= 0.864 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/Test	t Cell Cor	nditions			Sample Flows	
Barometer:	29.26	in Hg	99.1 kPa		scfm	scmm
Engine Inlet Air				Blower 1 Rate:	3,075.2	87.09
Temperature:	74.0	°F	23.3 °C	Blower 2 Rate:	0.0	0.00
Dew Point:	59.3	°F	15.2 °C	90 mm System:		
Abs. Humidity:	77.4	gr/lb	11.1 g/kg	Gas Meter 1:	1.96	0.06
Rel. Humidity:	60	%	3 3	Gas Meter 2:	3.76	0.11
Dilution Air:	00	, 0		Sample Rate:	1.80	0.05
Temperature:	75.0	°F	23.9 °C	Total Flow Rate:	3,076.99	87.14
Abs. Humidity	63.4	gr/lb	9.1 g/kg		Particulate Data	
Rel. Humidity:	48	%		Filter Number:	2189.0-1086 (pair)	
				Weight Gain:	¨ 2.978	mg
Measured G	aseous [) ata		Sample Multiplier	1.708	

	Meter	Range	Concentrati	on	
HC Sample	n/a		5.19	ppm	
HC Bckgrd	n/a		3.00	ppm	
COSample	29.1	2	28.24	ppm	(Dry)
CO B ck grd	0.2	2	0.19	ppm	
NOx Sample	n/a		33.47	ppm	(Dry)
NOx Bckgrd	0.1	2	0.10	ppm	
CO2 Sample	48.6	1	0.4612	%	(Wet)
CO2 Bckgrd	4.9	1	0.0445	%	

Corrected Concentrations

	2.29	ppm				
	27.37	ppm				
	32.75	ppm				
	0.4182	%				
Mass Emissions						
	2.323	grams				
	55.845	grams				
	110.435	grams				
	5.086	grams				
	13.410	kg				
9.41	lb	4.27 kg				
		27.37 32.75 0.4182 Emissions 2.323 55.845 110.435 5.086 13.410				

Correction Factors

NOx Humidity CF:	1.006
Dry-to-Wet CF, Sample:	0.981
Dry-to-Wet CF, Bckgrd:	0.986
Dilution Factor:	28.86

Test Cycle Data) Sample Time: 1,206.70 sec

Work: 24.79 hp-hr 18.49 kW-hr Reference Work: 24.83 hp-hr 18.52 kW-hr Total Volume (Vmix): 61,883.3 scf 1,752.57 scm

Brake-Specific Emission Results

BSHC (Cell)	0.094 g/hp-hr	0.126 g/kW-hr
CO	2.253 g/hp-hr	3.021 g/kW-hr
NOx (Cell)	4.455 g/hp-hr	5.974 g/kW-hr
Particulate	0.205 g/hp-hr	0.275 g/kW-hr
CO2	540.9 g/hp-hr	725.39 g/kW-hr
BSFC	0.379 lb/hp-hr	0.231 ka/kW-hr

Page 1 of 1 Analyzed: 03/30/1999 16:12

Engine Model: 91 DDC Series 60 Test No.: CARB-HOT-3 DIESEL CARB, EM-2663-F
Engine Desc.: 12.7 L (775 CID) 6 Date: 04/05/1999 Time: 02:15 HCR: 1.876 FID Resp: 1.00
Engine Cycle: Diesel Program HDT: 4.04-R H= 0.136 C= 0.864 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/Test	Cell Cor	nditions		,	Sample Flows	
Barometer:	29.02	in Hg	98.3 kPa		scfm	scmm
Engine Inlet Air				Blower 1 Rate:	3,050.0	86.38
Temperature:	74.0	°F	23.3 °C	Blower 2 Rate:	0.0	0.00
Dew Point:	59.3	°F	15.2 °C	90 mm System:		
Abs. Humidity:	78.0	gr/lb	11.1 g/kg	Gas Meter 1:	1.97	0.06
Rel. Humidity:	60	%	0 0	Gas Meter 2:	3.77	0.11
Dilution Air:				Sample Rate:	1.80	0.05
Temperature:	80.0	°F	26.7 °C	Total Flow Rate:	3,051.77	86.43
Abs. Humidity	29.3	gr/lb	4.2 g/kg		Particulate Data	
Rel. Humidity:	19	%		Filter Number:	2284.0-20 (pair)	
				Weight Gain:	2.915	mg
Measured G	aseous [_		Sample Multiplier:	1.697	

	Meter	Range	Concentrati	on	
HC Sample	n/a		5.23	ppm	
HC Bckgrd	n/a		2.60	ppm	
COSample	28.7	2	27.85	ppm	(Dry)
CO B ck grd	n/a	2	0.00	ppm	
NOx Sample	n/a		32.85	ppm	(Dry)
NOx Bckgrd	0.1	2	0.10	ppm	
CO2 Sample	48.2	1	0.4573	%	(Wet)
CO2 Bckgrd	4.7	1	0.0427	%	

Corrected Concentrations

	2.72	ppm				
	27.43	ppm				
	32.39	ppm				
	0.4161	%				
Mass Emissions						
	2.733	grams				
	55.567	grams				
	108.625	grams				
	4.946	grams				
	13.243	kg				
9.29	lb	4.21 kg				
		27.43 32.39 0.4161 Emissions 2.733 55.567 108.625 4.946 13.243	27.43 ppm 32.39 ppm 0.4161 % Emissions 2.733 grams 55.567 grams 108.625 grams 4.946 grams 13.243 kg			

Correction Factors

8(
39
93
0

Test Cycle Data Sample Time: 1,207.80 sec

 Work:
 24.97 hp-hr
 18.62 kW-hr

 Reference Work:
 24.83 hp-hr
 18.52 kW-hr

 Total Volume (Vmix):
 61,432.2 scf
 1,739.80 scm

Brake-Specific Emission Results

BSHC (Cell)	0.109 g/hp-hr	0.147 g/kW-hr
CO	2.225 g/hp-hr	2.984 g/kW-hr
NOx (Cell)	4.350 g/hp-hr	5.834 g/kW-hr
Particulate	0.198 g/hp-hr	0.266 g/kW-hr
CO2	530.3 g/hp-hr	711.20 g/kW-hr
BSFC	0.372 lb/hp-hr	0.226 kg/kW-hr

Analyzed: 04/06/1999 08:09 Page 1 of 1

Engine Model: 91 DDC Series 60 Test No.: CARB-HOT-4 DIESEL CARB, EM-2663-F
Engine Desc.: 12.7 L (775 CID) 6 Date: 04/05/1999 Time: 02:55 HCR: 1.876 FID Resp: 1.00
Engine Cycle: Diesel Program HDT: 4.04-R H= 0.136 C= 0.864 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/Test	Cell Cor	ditions			Sample Flows	
Barometer:	29.00	in Hg	98.2 kPa		scfm	scmm
Engine Inlet Air				Blower 1 Rate:	3,047.9	86.32
Temperature:	74.0	°F	23.3 °C	Blower 2 Rate:	0.0	0.00
Dew Point:	59.2	°F	15.1 °C	90 mm System:		
Abs. Humidity:	77.8	gr/lb	11.1 g/kg	Gas Meter 1:	1.97	0.06
Rel. Humidity:	60	%	gg	Gas Meter 2:	3.77	0.11
Dilution Air:	00	70		Sample Rate:	1.79	0.05
Temperature:	75.0	°F	23.9 °C	Total Flow Rate:	3,049.66	86.37
Abs. Humidity	37.6	gr/lb	5.4 g/kg		Particulate Data	
Rel. Humidity:	28	%		Filter Number	2285 0-21 (pair)	

Measured Gaseous Data

	Meter	Range	Concentrati	on	
HC Sample	n/a		4.98	ppm	
HC Bckgrd	n/a		3.00	ppm	
COSample	29.2	2	28.34	ppm	(Dry)
CO B ck grd	0.1	2	0.10	ppm	
NOx Sample	n/a		33.03	ppm	(Dry)
NOx Bckgrd	0.1	2	0.10	ppm	
CO2 Sample	48.4	1	0.4593	%	(Wet)
CO2 Bckgrd	4.5	1	0.0409	%	

2.08

ppm

Corrected Concentrations

HC

			I I	
CO		27.73	ppm	
NOx		32.51	ppm	
CO2		0.4198	%	
Mass	Emis	sions		
HC		2.093	grams	
CO		56.123	grams	
NOx		108.854	grams	
Particulate		4.900	grams	
CO2		13.350	kg	
Fuel	9.37	lb	4.25 kg	

Weight Gain: 2.879 mg
Sample Multiplier: 1.702

Correction Factors

1.007
0.987
0.991
28.97

Sample Time:

Test Cycle Data 1,207.60 sec

Work:	24.89	hp-hr	18.56	kW-hr
Reference Work:	24.83	hp-hr	18.52	kW-hr
Total Volume (Vmix):	61,379.4	scf	1,738.30	scm

Brake-Specific Emission Results

BSHC	(Cell)	0.084	g/hp-hr	0.113	g/kW-hr
CO		2.255	g/hp-hr	3.024	g/kW-hr
NOx	(Cell)	4.373	g/hp-hr	5.865	g/kW-hr
Particul	late	0.197	g/hp-hr	0.264	g/kW-hr
CO2		536.4	g/hp-hr	719.29	g/kW-hr
BSFC		0.376	lb/hp-hr	0.229	ka/kW-hr

Analyzed: 04/06/1999 08:13 Page 1 of 1

 Engine Model:
 91 DDC Series 60
 Test No.: NONRD-HOT-1
 DIESEL NONRD, EM-2708-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 04/01/1999 Time: 02:30
 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambie	nt/Test Cell	Conditions	6			Sample Flows	
Barometer:	28	.88 in Hg	97.8 kPa			scfm	scmm
Engine Inlet Air	r				Blower 1 Rate:	3,035.2	85.96
Temperatu	ıre: 74	.0 °F	23.3 °C		Blower 2 Rate:	0.0	0.00
Dew Point:	: 59	.6 °F	15.3 °C		90 mm System:		
Abs. Humi	dity: 79	.3 gr/lb	11.3 g/kg		Gas Meter 1:	1.98	0.06
Rel. Humic	-	%	99		Gas Meter 2:	3.74	0.11
Dilution Air:	arty. Of	70			Sample Rate	: 1.76	0.05
Temperatu	re: 79	.0 °F	26.1 °C		Total Flow Rate:	3,036.99	86.01
Abs. Humid	dity 93	.8 gr/lb	13.4 g/kg			Particulate Data	
Rel. Humid	dity: 61	%			Filter Number:	2239.0-6 (pair)	
					Weight Gain:	" ´ 3.94	l0 mg
Meas	ured Gaseo	us Data			Sample Multiplie	er: 1.72	24
	Meter Ra	ange Cond	entration				
HC Sample	n/a		6.20 ppm			Correction Factors	3
HC Bckgrd	n/a		3.70 ppm		NOx Humidity C		1.011
CO Sample	34.0	2	33.03 nnm	(Dry)	Dry-to-Wet CF, \$	Sample:	0.975

HC Sample	n/a		6.20	ppm		Correction Fa	ctors
HC Bckgrd	n/a		3.70	ppm	NOx Humidity C		
COSample	34.0	2	33.03	ppm (Dry)	Dry-to-Wet CF,		
CO Bckgrd	0.3	2	0.29	ppm	Dry-to-Wet CF, I Dilution Factor:	ьскуга:	
NOx Sample	n/a		36.84	ppm (Dry)	Dilution Lactor.		
NOx Bckgrd	1.7	1	0.44	ppm		Test Cycle	Data
CO2 Sample	50.7	1	0.4820	% (Wet)	Sample Time:	1,207.60	sec
CO2 Bckgrd	6.6	1	0.0601	%	Work [.]	24 97	hp-hr

NOx

CO2

Fuel

Particulate

118.764

6.791

13.429

9.39 lb

grams

grams

kg

4.26 kg

CO2 Sample	50.7 1	0.4820	% (Wet)	Sample Time:	1,207.60 sec	
CO2 Bckgrd	6.6 1	0.0601	%	Work:	24.97 hp-hr	18.62 kW-hr
				Reference Work:	24.83 hp-hr	18.52 kW-hr
				Total Volume (Vmix):	61,124.6 scf	1,731.08 scm
Correct	ed Concentrati	ons		, ,	•	,
HC	2.63	ppm		Brake-Sp	ecific Emission F	Results
CO	31.80	ppm		BSHC (Cell) 0.1	05 g/hp-hr	0.141 g/kW-hr
NOx	35.48	ppm		` '	567 a/hn-hr	3 442 g/kW-hr

0.979 27.93

NOx	35.48	ppm	CO	2.567 g/hp-hr	3.442 g/kW-hr
CO2	0.4241	%	NOx (Cell)	4.756 g/hp-hr	6.378 g/kW-hr
			Particulate	0.272 g/hp-hr	0.365 g/kW-hr
Mas	s Emissions		CO2	537.8 g/hp-hr	721.22 g/kW-hr
HC	2.621	grams	BSFC	0.376 lb/hp-hr	0.229 kg/kW-hr
CO	64.096	grams			

Analyzed: 07/30/1999 13:15 Page 1 of 1

 Engine Model:
 91 DDC Series 60
 Test No.: NONRD-HOT-2
 DIESEL NONRD, EM-2708-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 04/01/1999 Time: 03:10
 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

HС

CO

NOx

CO2

Fuel

Particulate

2.727

62.501

6.877

13.258

9.27 lb

116.468

grams

grams

grams

grams

kg

4.20 kg

Ambien	t/Tast (Call Cor	nditione					Sam	ple Flows			
Barometer:	1/1651	28.87	in Hg	97.8	kPa			Oum	scfm		scmm	
Engine Inlet Air		20.07	ıg	07.0	Μ α		Blower 1 Rate):	3,034	.0	85.9	
Temperatur	e:	74.0	°F	23.3	°C		Blower 2 Rate):	,	.0	0.0	
Dew Point:		61.1	°F	16.2			90 mm System	n:				
Abs. Humid	itv ·	83.7	gr/lb	12.0	_		Gas Meter		1.9	98	0.0)6
Rel. Humidi	•	64	%	12.0	g/Ng		Gas Meter	2:	3.7	76	0.1	1
Dilution Air:	ty.	04	/0				Sample Ra	te:	1.7	78	0.0	15
Temperatur	e.	78.0	°F	25.6	°C		Total Flow Rat	te:	3,035.8	32	85.9	8
Abs. Humid		95.5	gr/lb	13.6				_		_		
Rel. Humidi	•	64	%	10.0	g/kg				ticulate D	ata		
nei. Huilliui	ιу.	04	70				Filter Number:	2244	.0-7 (pair)	4 020	ma	
Moasu	rod Ga	seous [) ata				Weight Gain: Sample Multip	lior:		4.030 1.706	mg	
			e Conc	entrati	on		Sample Multip	iici.		1.700		
HC Sample	n/a	-		6.31	ppm			Corr	ection Fa	ctors		
HC Bckgrd	n/a			3.70	ppm		NOx Humidity	CF:			1.023	
CO Sample	33.7		;	32.74		(Dry)	Dry-to-Wet CF				0.974	
CO B ck grd	0.8			0.78	ppm	(),	Dry-to-Wet CF		l:		0.979	
NOx Sample	n/a		;	35.72		(Dry)	Dilution Factor	Ϊ.			28.28	
NOx Bckgrd	1.6	1		0.41	ppm	,		Т	est Cycle	Data		
CO2 Sample	50.1	1	0.	.4760	%	(Wet)	Sample Time:		1,207.40			
CO2 Bckgrd	6.5	1	0.	.0592	%		Work:		24.90	hp-hr	18.5	7 kW-hr
							Reference Wo	rk:	24.83	hp-hr	18.5	2 kW-hr
C = *** = = +*	. d O						Total Volume ((Vmix):	61,090.9	scf	1,730.13	3 scm
Correcte HC	ea Con	2.74					_		= .			
CO		31.03	ppm					•	cific Emis			
NOx		34.40	ppm				BSHC (Cell)		10 g/hp-hr		•	g/kW-hr
CO2		0.4189	ppm %				CO NOx (Cell)		10 g/hp-hr		•	g/kW-hr
002		0.4100	/0				NOx (Cell) Particulate		77 g/hp-hr 76 g/hp-hr			g/kW-hr g/kW-hr
Mass E	missio	ns					CO2		.5 g/hp-hr		714.05	-
		0.707					DOE		.5 g/Hp-H		7 14.00 (

BSFC

0.372 lb/hp-hr

0.226 kg/kW-hr

Analyzed: 07/30/1999 13:16 Page 1 of 1

DIESEL NONRD, EM-2708-F Engine Model: 91 DDC Series 60 Test No.: NONRD-HOT-3 Engine Desc.: 12.7 L (775 CID) 6 Date: 04/06/1999 Time: 03:47 1.812 FID Resp: 1.00 HCR: Engine Cycle: Diesel Program HDT: 4.04-R H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

CO

NOx

CO2

Fuel

Particulate

62.932

6.303

13.273

9.28 lb

120.793

grams

grams

grams

kg

4.21 kg

Ambier	nt/Test C	ell Cor	nditions	;			Sample Flows			
Barometer:		29.17	in Hg	98.8	kPa			scfm	scmm	
Engine Inlet Air							Blower 1 Rate:	3,024.1	85.64	
Temperatu	re:	75.0	°F	23.9	°C		Blower 2 Rate:	0.0	0.00	
Dew Point:		57.4	°F	14.1	°C		90 mm System:			
Abs. Humid	dity:	72.4	gr/lb	10.3	g/kg		Gas Meter 1:	1.95	0.06	
Rel. Humid	litv:	54	%		0 0		Gas Meter 2:	3.77	0.11	
Dilution Air:	, .	0.	,0				Sample Rate:	1.82	0.05	
Temperatu	re:	80.0	°F	26.7	°C		Total Flow Rate:	3,025.92	85.70	
Abs. Humic	dity	37.4	gr/lb	5.3	g/kg			Particulate Data		
Rel. Humid	ity:	24	%				Filter Number:	2324.0-25 (pair)		
							Weight Gain:	· · · ·	791 mg	
Measu	ured Ga	seous [) ata				Sample Multiplie	r: 1.6	663	
	Meter	Range	e Conc	entrat	ion					
HC Sample	n/a			5.29	ppm			Correction Factor	rs	
HC Bckgrd	n/a			2.50	ppm		NOx Humidity Cl		0.993	
CO Sample	33.1	2	;	32.15	ppm	(Dry)	Dry-to-Wet CF, S		0.987	
CO B ck grd	0.3	2		0.29	ppm		Dry-to-Wet CF, E	зскgra:	0.991	

HC Bckgrd	n/a		2.50	• •	NOx Humidity CF: Dry-to-Wet CF, Sample:	0.993 0.987
CO Sample	33.1	2	32.15	ppm (Dry)	Dry-to-Wet CF, Bample.	0.991
CO Bckgrd	0.3	2	0.29	ppm	Dilution Factor:	29.31
NOx Sample	n/a		37.44	ppm (Dry)	Bliation ractor.	20.01
NOx Bckgrd	0.1	2	0.10	ppm	Test Cycle	Data

CO2 Sample 48.4 0.4593 % (Wet) 1 Sample Time: 1,207.60 sec CO2 Bckgrd 4.4 1 0.0400 % Work: 24.97 hp-hr 18.62 kW-hr Reference Work: 18.52 kW-hr 24.83 hp-hr Total Volume (Vmix): 60,901.7 scf 1,724.77 scm **Corrected Concentrations**

HC	2.88	ppm	Brake	e-Specific Emission	Results
CO	31.34	ppm	BSHC (Cell)	0.114 g/hp-hr	0.153 g/kW-hr
NOx	36.87	ppm	co ` ´	2.520 g/hp-hr	3.380 g/kW-hr
CO2	0.4207	%	NOx (Cell)	4.838 g/hp-hr	6.487 g/kW-hr
			Particulate	0.252 g/hp-hr	0.338 g/kW-hr
Mas	s Emissions		CO2	531.6 g/hp-hr	712.85 g/kW-hr
HC	2.852	grams	BSFC	0.372 lb/hp-hr	0.226 kg/kW-hr

Page 1 of 1 Analyzed: 07/30/1999 13:17

 Engine Model:
 91 DDC Series 60
 Test No.: NONRD-HOT-4
 DIESEL NONRD, EM-2708-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 04/06/1999 Time: 04:27 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

NOx

CO2

Fuel

Particulate

119.292

6.388

13.265

9.27 lb

grams

grams

kg

4.20 kg

Ambien	t/Test C	Cell Cor	ditions	;					Samp	le Flows			
Barometer:		29.16	in Hg	98.7	kPa					scfm		scmm	
Engine Inlet Air							Blower	1 Rate:		3,020	.4	85.54	
Temperatur	e:	74.0	°F	23.3	°C		Blower	2 Rate:		0	.0	0.00	
Dew Point:		59.2	°F	15.1	°C		90 mm	System:					
Abs. Humid	ity:	77.3	gr/lb	11.0	g/kg		Gas	Meter 1:			97	0.06	
Rel. Humidi	tv:	60	%		0 0			Meter 2:		3.		0.11	
Dilution Air:	,							nple Rate		1.8		0.05	
Temperatur	e:	80.0	°F	26.7	°C		Total F	low Rate	•	3,022.	17	85.59	
Abs. Humid	ity	37.4	gr/lb	5.3	g/kg				Parti	iculate D	ata		
Rel. Humidi	ty:	24	%				Filter N	umber:		0-26 (pair			
							Weight	Gain:		([′] 3.820	mg	
Measu	red Ga	seous [) ata				Sample	Multiplie	er:		1.672		
	Meter	Range	Conc		ion						_		
HC Sample	n/a			5.33	ppm					ction Fa	ctors	4 000	
HC Bckgrd	n/a			3.00	ppm			umidity C				1.006 0.987	
COSample	32.4		;	31.46	ppm	(Dry)		Wet CF, Wet CF,				0.991	
CO Bckgrd	0.6	2		0.58	ppm		•	Factor:	Dongra.			29.19	
NOx Sample	n/a		;	36.64	ppm	(Dry)	Dilatio					20.10	
NOx Bckgrd	0.2	2		0.20	ppm				Te	st Cycle	Data		
CO2 Sample	48.6			.4612	%	(Wet)	Sample	e Time:	-	,207.90	sec		
CO2 Bckgrd	4.6	1	0.	.0418	%		Work:			24.97	hp-hr	18.62 l	∢W-hr
							Refere	nce Work	κ:	24.83	hp-hr	18.52 l	∢W-hr
Courant	ad Can		iono				Total V	olume (V	mix):	60,841.4	scf	1,723.06	scm
Corrected Concentrations HC 2.43 ppm													
CO		2.43 30.38	ppm						•	cific Emis			
NOv		30.38	ppm				BSHC	(Cell)	0.09	7 g/hp-hi	•	0.129 g/k	W-hr

HC	2.43	ppm	Brake-Specific Emission Results
CO	30.38	ppm	BSHC (Cell) 0.097 g/hp-hr 0.129 g/kW-hr
NOx	35.98	ppm	CO 2.441 g/hp-hr 3.273 g/kW-hr
CO2	0.4208	%	NOx (Cell) 4.777 g/hp-hr 6.407 g/kW-hr
			Particulate 0.256 g/hp-hr 0.343 g/kW-hr
	Mass Emissions		CO2 531.3 g/hp-hr 712.42 g/kW-hr
HC	2.411	grams	BSFC 0.371 lb/hp-hr 0.226 kg/kW-hr
CO	60.949	grams	

Analyzed: 07/30/1999 13:19 Page 1 of 1

 Engine Model:
 91 DDC Series 60
 Test No.: ONHWY-HOT-1
 DIESEL ONHWY, EM-2677-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 03/31/1999 Time: 03:00
 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/Te	st Cell Co	nditions	i	Sample Flows				
Barometer:	28.97	in Hg	98.1 kPa		scfm	scmm		
Engine Inlet Air				Blower 1 Rate:	3,050.1	86.38		
Temperature:	74.0	°F	23.3 °C	Blower 2 Rate:	0.0	0.00		
Dew Point:	59.2	°F	15.1 °C	90 mm System:				
Abs. Humidity:	77.9	gr/lb	11.1 g/kg	Gas Meter 1:	1.98	0.06		
Rel. Humidity:	60	%	3 3	Gas Meter 2:		0.11		
Dilution Air:		, •		Sample Rate		0.05		
Temperature:	78.0	°F	25.6 °C	Total Flow Rate:	3,051.94	86.43		
Abs. Humidity	68.9	gr/lb	9.8 g/kg		Particulate Data			
Rel. Humidity:	47	%		Filter Number:	2234.0-1 (pair)			
				Weight Gain:	" ´ 3.063	mg		
Measured	Measured Gaseous Data			Sample Multiplie	er: 1.694			
Me	ter Rang	e Conc	entration					
HC Sample	n/a		5.61 ppm		Correction Factors			

NOx Humidity CF:

Dilution Factor:

Sample Time:

Work:

Dry-to-Wet CF, Sample:

Dry-to-Wet CF, Bckgrd:

1.007

0.980

0.984

28.65

18.53 kW-hr

18.52 kW-hr 1,739.46 scm

0.157 g/kW-hr 3.160 g/kW-hr 6.180 g/kW-hr 0.280 g/kW-hr 706.19 g/kW-hr 0.224 kg/kW-hr

Test Cycle Data

1,207.50 sec

24.85 hp-hr

	Meter	Range	Concentrati	on	
HC Sample	n/a		5.61	ppm	
HC Bckgrd	n/a		2.80	ppm	
COSample	31.2	2	30.29	ppm	(Dry)
CO Bckgrd	0.7	2	0.68	ppm	
NOx Sample	n/a		35.14	ppm	(Dry)
NOx Bckgrd	1.1	1	0.28	ppm	
CO2 Sample	49.5	1	0.4701	%	(Wet)
CO2 Bckgrd	6.7	1	0.0610	%	

5.188

13.086

9.14 lb

grams

kg

4.15 kg

Particulate

CO2

Fuel

			Reference Wor	k:	24.84 hp	-hr 18.
Cor	rected Concentration	ons	Total Volume (\	/mix): 6	61,420.4 sc	f 1,739.4
HC	2.91	ppm	Bra	ke-Speci	fic Emissio	n Results
CO	28.92	ppm	BSHC (Cell)	•	g/hp-hr	0.157
NOx	34.17	ppm	CO		g/hp-hr	3.160
CO2	0.4112	%	NOx (Cell)	4.609	g/hp-hr	6.180
			Particulate	0.209	g/hp-hr	0.280
Ma	ass Emissions		CO2	526.6	g/hp-hr	706.19
HC	2.909	grams	BSFC	0.368	lb/hp-hr	0.224
CO	58.558	grams				
NOx	114.527	grams				

Analyzed: 04/01/1999 09:53 Page 1 of 1

Engine Model: 91 DDC Series 60 Test No.: ONHWY-HOT-2 DIESEL ONHWY, EM-2677-F
Engine Desc.: 12.7 L (775 CID) 6 Date: 03/31/1999 Time: 03:40 HCR: 1.812 FID Resp: 1.00
Engine Cycle: Diesel Program HDT: 4.04-R H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambier	nt/Test C	ell Cor	nditions				Sample Flows			
Barometer:		28.96	in Hg	98.1	kPa			scfm		scmm
Engine Inlet Air							Blower 1 Rate:	3,041	.5	86.14
Temperatu	re:	74.0	°F	23.3	°C		Blower 2 Rate:	0	.0	0.00
Dew Point:		57.9	°F	14.4	°C		90 mm System:			
Abs. Humic	dity:	74.3	gr/lb	10.6	g/kg		Gas Meter 1:	1.9) 7	0.06
Rel. Humid	•	57	%		9.1.9		Gas Meter 2:	3.7	⁷ 8	0.11
Dilution Air:		0,	70				Sample Rate	: 1.8	31	0.05
Temperatu	re:	78.0	°F	25.6	°C		Total Flow Rate:	3,043.2	<u>'</u> 7	86.19
Abs. Humic	dity	69.0	gr/lb	9.9	g/kg			Particulate Da	ata	
Rel. Humid	ity:	47	%				Filter Number:	2235.0-2 (pair)		
							Weight Gain:	,	3.043	mg
Meası	ured Ga						Sample Multiplier: 1.680			
	Meter	Range	e Conc	entrati	ion					
HC Sample	n/a			5.71	ppm			Correction Fac	ctors	
HC Bckgrd	n/a			2.80	ppm		NOx Humidity C			0.998
CO Sample	31.4	2	;	30.48		(Drv)	Dry-to-Wet CF,	Sample:		0.980

Dry-to-Wet CF, Bckgrd:

Dilution Factor:

Sample Time:

BSFC

0.984

28.53

18.52 kW-hr

18.52 kW-hr 1,734.09 scm

0.162 g/kW-hr 3.172 g/kW-hr 6.157 g/kW-hr 0.276 g/kW-hr 716.82 g/kW-hr

0.227 kg/kW-hr

Test Cycle Data

0.373 lb/hp-hr

1,207.20 sec

	weter	нange	Concentrati	on	
HC Sample	n/a		5.71	ppm	
HC Bckgrd	n/a		2.80	ppm	
COSample	31.4	2	30.48	ppm	(Dry)
CO B ck grd	0.7	2	0.68	ppm	
NOx Sample	n/a		35.46	ppm	(Dry)
NOx Bckgrd	1.2	1	0.31	ppm	
CO2 Sample	49.7	1	0.4721	%	(Wet)
CO2 Bckgrd	6.1	1	0.0555	%	

3.000

58.749

5.113

13.278

9.28 lb

114.052

grams

grams

grams

grams

kg

4.21 kg

HC

CO

NOx

CO2

Fuel

Particulate

CO2 Bckgrd	6.1 1	0.0555 %	Work:		24.84 hp-hr	18.5
			Reference Work		24.83 hp-hr	18.5
			Total Volume (V	mix):	61,230.6 scf	1,734.0
Correcte	ed Concentration	ons				
HC	3.01	ppm	Brak	e-Spe	cific Emission F	Results
CO	29.10	ppm	BSHC (Cell)	0.12	1 g/hp-hr	0.162
NOx	34.46	ppm	CO		5 g/hp-hr	3.172
CO2	0.4185	%	NOx (Cell)		1 g/hp-hr	6.157
			Particulate	0.20	6 g/hp-hr	0.276
Mass E	missions		CO2	534.	5 g/hp-hr	716.82

Analyzed: 04/01/1999 09:53 Page 1 of 1

 Engine Model:
 91 DDC Series 60
 Test No.: ONHWY-HOT-3
 DIESEL ONHWY, EM-2677-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 04/02/1999 Time: 02:10
 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/T	est Cell Coi	nditions		Sample Flows			
Barometer:	28.83	in Hg	97.6 kPa		scfm	scmm	
Engine Inlet Air				Blower 1 Rate:	3,029.7	85.80	
Temperature:	73.0	°F	22.8 °C	Blower 2 Rate:	0.0	0.00	
Dew Point:	61.7	°F	16.5 °C	90 mm System:			
Abs. Humidity	85.7	gr/lb	12.2 g/kg	Gas Meter 1:	1.96	0.06	
Rel. Humidity:	68	%	3 3	Gas Meter 2:	3.77	0.11	
Dilution Air:	00	,0		Sample Rate:	1.81	0.05	
Temperature:	81.0	°F	27.2 °C	Total Flow Rate:	3,031.47	85.85	
Abs. Humidity	101.9	gr/lb	14.6 g/kg	P	articulate Data		
Rel. Humidity:	62	%		Filter Number: 220	64.0-14 (pair)		
				Weight Gain:	3.150	mg	
Measure	d Gaseous I) ata		Sample Multiplier: 1.678			
Me	eter Rang	e Conc	entration				
HC Sample	n/a		6.71 ppm	Co	rrection Factors		
HC Bckgrd	n/a		3.75 ppm	NOx Humidity CF:		1.029	

	Meter	Range	Concentrati	on	
HC Sample	n/a		6.71	ppm	
HC Bckgrd	n/a		3.75	ppm	
COSample	33.0	2	32.05	ppm	(Dry)
CO B ck grd	0.5	2	0.49	ppm	
NOx Sample	n/a		35.23	ppm	(Dry)
NOx Bckgrd	0.3	2	0.30	ppm	
CO2 Sample	49.6	1	0.4711	%	(Wet)
CO2 Bckgrd	5.4	1	0.0491	%	

Correc	cted Concentratio	ns							
HC	3.09	ppm							
CO	30.66	ppm							
NOx	33.98	ppm							
CO2	0.4237	%							
Mass Emissions									
HC	3.073	arame							
		grams							
CO	61.694	grams							
NOx	115.531	grams							
Particulate	5.286	grams							

13.398

9.36 lb

kg

4.25 kg

CO2

Fuel

Dilution Factor:			28.57							
Test Cycle Data										
Sample Time:	1,207.90									
Work:	24.87	hp-hr	18.55	kW-hr						
Reference Work:	24.83	hp-hr	18.52	kW-hr						
Total Volume (Vmix):	61,028.6	scf	1,728.37	scm						
Brake-Specific Emission Results										

0.973

0.977

Dry-to-Wet CF, Sample:

Dry-to-Wet CF, Bckgrd:

BSHC (Cell)	0.124 g/hp-hr	0.166 g/kW-hr
CO	2.481 g/hp-hr	3.327 g/kW-hr
NOx (Cell)	4.645 g/hp-hr	6.230 g/kW-hr
Particulate	0.213 g/hp-hr	0.285 g/kW-hr
CO2	538.7 g/hp-hr	722.41 g/kW-hr
BSFC	0.376 lb/hp-hr	0.229 kg/kW-hr

Analyzed: 04/05/1999 08:26 Page 1 of 1

 Engine Model:
 91 DDC Series 60
 Test No.: ONHWY-HOT-4
 DIESEL ONHWY, EM-2677-F

 Engine Desc.:
 12.7 L (775 CID) 6
 Date: 04/02/1999 Time: 02:50
 HCR: 1.812 FID Resp: 1.00

 Engine Cycle:
 Diesel
 Program HDT: 4.04-R
 H= 0.132 C= 0.868 O= 0.000 X= 0.000

Engine S/N: 6RE001123 Cell: 4 Bag Cart: 2

Ambient/	Test Cell Co	nditions			Sample Flows	
Barometer:	28.84	in Hg	97.7 kPa		scfm	scmm
Engine Inlet Air				Blower 1 Rate:	3,035.4	85.97
Temperature:	73.0	°F	22.8 °C	Blower 2 Rate:	0.0	0.00
Dew Point:	59.2	°F	15.1 °C	90 mm System:		
Abs. Humidity	/: 78.2	gr/lb	11.2 g/kg	Gas Meter 1:	1.99	0.06
Rel. Humidity	: 62	%	3 3	Gas Meter 2:	3.75	0.11
Dilution Air:	. 02	70		Sample Rate:	1.76	0.05
Temperature:	80.0	°F	26.7 °C	Total Flow Rate:	3,037.19	86.02
Abs. Humidity	97.8	gr/lb	14.0 g/kg		Particulate Data	
Rel. Humidity	: 61	%		Filter Number:	2268.0-15 (pair)	
				Weight Gain:	^{°°} 3.021	mg
Measure	d Gaseous	D ata		Sample Multiplie	r: 1.726	
M	eter Rang	e Conce	entration			
HC Sample	n/a		6.92 ppm		Correction Factors	
HC Bckgrd	n/a		4.30 ppm	NOx Humidity Cl	F:	1.008

	Meter	Range	Concentrati	on	
HC Sample	n/a		6.92	ppm	
HC Bckgrd	n/a		4.30	ppm	
COSample	32.1	2	31.17	ppm	(Dry)
CO Bckgrd	0.6	2	0.58	ppm	
NOx Sample	n/a		35.40	ppm	(Dry)
NOx Bckgrd	0.4	2	0.40	ppm	
CO2 Sample	49.9	1	0.4741	%	(Wet)
CO2 Bckgrd	6.0	1	0.0546	%	

	Corrected Concentration	ons	
HC	2.77	ppm	
CO	29.72	ppm	Ī
NOx	34.08	ppm	(
CO2	0.4214	%	ī
			ŀ
	Mass Emissions		(
HC	2.759	grams	i
CO	59.911	grams	
NOx	113.803	grams	

5.216

13.348

9.33 lb

grams

kg

4.23 kg

Particulate

CO2

Fuel

Test Cycle Data										
Sample Time:	1,207.70	sec								
Work:	24.85	hp-hr	18.53	kW-hr						
Reference Work:	24.83	hp-hr	18.52	kW-hr						
Total Volume (Vmix):	61,133.6	scf	1,731.34	scm						

0.974

0.978

28.40

Dry-to-Wet CF, Sample:

Dry-to-Wet CF, Bckgrd:

Dilution Factor:

Brake-Specific Emission Results												
BSHC	(Cell)	0.111	g/hp-hr	0.149	g/kW-hr							
CO		2.411	g/hp-hr	3.233	g/kW-hr							
NOx	(Cell)	4.580	g/hp-hr	6.141	g/kW-hr							
Particul	ate	0.210	g/hp-hr	0.281	g/kW-hr							
CO2		537.1	g/hp-hr	720.31	g/kW-hr							
BSFC		0.375	lb/hp-hr	0.228	kg/kW-hr							

Analyzed: 04/05/1999 08:26 Page 1 of 1

APPENDIX N-2

DDC Series 60 Steady-State Test Data

DDC SERIES 60 STEADY-STATE TEST RESULTS

							Emissio	ons (g/hr)		Fuel	BS E	missio	ns (g/h _l	p-hr)	BSFC
Fuel	Mode	Run #	rpm	lb-ft	hp	HC	СО	NOx	PM	(lb/hr)	HC	CO	NOx	PM	(lb/hp-hr)
CARB	Idle	1	600	2	1.2	0.11	19.7	75.8	5.03	2.6	NA	NA	NA	NA	NA
CARB	Idle	2	600	0	8.0	1.34	21.0	60.3	3.27	2.3	NA	NA	NA	NA	NA
CARB	Idle	3	600	0	0.4	1.16	20.2	64.5	2.75	2.3	NA	NA	NA	NA	NA
CARB	Idle	4	600	0	0.1	0.11	18.5	60.2	3.16	2.4	NA	NA	NA	NA	NA
CARB	Idle	5	600	0	0.1	1.14	22.0	66.0	3.35	2.6	NA	NA	NA	NA	NA
CARB	N5	1	1706	536	174.2	8.32	49.5	1627.5	13.61	57.9	0.048	0.28	9.34	0.078	0.332
CARB	N5	2	1695	536	172.6	9.08	48.9	1592.2	12.44	56.1	0.053	0.28	9.22	0.072	0.325
CARB	N5	3	1714	542	177.6	6.70	58.8	1603.6	11.42	57.5	0.038	0.33	9.03	0.064	0.324
CARB	N5	4	1718	543	179.0	6.98	57.0	1617.3	11.93	58.2	0.039	0.32	9.04	0.067	0.325
CARB	N5	5	1720	544	180.0	8.75	50.5	1645.8	12.82	58.6	0.049	0.28	9.14	0.071	0.326
CARB	N8	1	1800	1042	358.0	12.65	168.6	2623.7	25.15	114.1	0.035	0.47	7.33	0.070	0.319
CARB	N8	2	1800	1059	362.3	11.24	175.9	2581.8	19.80	114.1	0.031	0.49	7.13	0.055	0.315
CARB	N8	3	1800	1056	362.4	10.11	207.3	2807.8	27.25	121.5	0.028	0.57	7.75	0.075	0.335
CARB	N8	4	1800	1053	360.1	10.53	185.9	2608.4	19.18	113.3	0.029	0.52	7.24	0.053	0.315
CARB	N8	5	1800	1052	360.4	9.34	189.4	2598.4	19.49	114.4	0.026	0.53	7.21	0.054	0.317
CARB	N8	6	1800	1055	364.0	10.04	185.8	2604.3	19.06	114.9	0.028	0.51	7.15	0.052	0.316
CARB	N8	7	1800	1051	364.0	12.02	189.6	2653.9	19.08	114.7	0.033	0.52	7.29	0.052	0.315
ONHWY	Idle	1	600	0	0.1	4.39	28.5	52.5	3.64	2.1	NA	NA	NA	NA	NA
ONHWY	Idle	2	600	0	0.7	3.98	30.7	64.8	6.07	2.3	NA	NA	NA	NA	NA
ONHWY	N5	1	1700	531	171.8	10.00	50.2	1684.6	13.38	55.5	0.058	0.29	9.81	0.078	0.323
ONHWY	N5	2	1699	530	171.2	11.91	50.9	1681.4	13.21	55.8	0.070	0.30	9.82	0.077	0.326
ONHWY	N8	1	1800	1059	362.8	12.01	185.4	2697.0	24.29	116.6	0.033	0.51	7.43	0.067	0.321
ONHWY	N8	2	1800	1060	363.1	12.64	191.4	2687.5	23.18	115.9	0.035	0.53	7.40	0.064	0.319
NONRD	Idle	1	600	0	0.4	2.47	34.1	61.1	7.41	2.4	NA	NA	NA	NA	NA
NONRD	Idle	2	600	0	1.3	3.41	31.4	64.4	4.57	2.4	NA	NA	NA	NA	NA
NONRD	N5	1	1718	538	175.9	3.51	53.0	1726.3	21.43	56.5	0.020	0.30	9.81	0.122	0.321
NONRD	N5	2	1701	532	171.6	11.66	51.1	1766.2	22.69	55.9	0.068	0.30	10.29	0.132	0.326
NONRD	N8	1	1800	1093	373.9	6.02	207.4	2811.9	35.82	116.1	0.016	0.55	7.52	0.096	0.311
NONRD	N8	2	1800	1099	376.0	11.31	194.9	2907.5	31.88	119.4	0.030	0.52	7.73	0.085	0.318

AAR	3-mode	Duty-Cycle	Weighted	Results

	bsfc	HC	CO	NOx	PM
CARB Run #1	0.331	0.040	0.482	8.236	0.091
CARB Run #2	0.326	0.043	0.497	8.005	0.072
CARB Run #3	0.339	0.035	0.567	8.396	0.082
CARB Run #4	0.327	0.033	0.519	8.059	0.069
CARB Run #5	0.330	0.038	0.525	8.095	0.072
Average	0.331	0.038	0.518	8.158	0.077
COV	2%	10%	6%	2%	12%
On-Hwy Run #1	0.330	0.058	0.547	8.389	0.084
On-Hwy Run #2	0.329	0.061	0.567	8.397	0.091
Average	0.329	0.059	0.557	8.393	0.087
COV	0%	4%	3%	0%	5%
Nonroad Run #1	0.322	0.026	0.597	8.464	0.131
Nonroad Run #2	0.327	0.054	0.561	8.729	0.116
Average	0.325	0.040	0.579	8.596	0.123
COV	1%	49%	4%	2%	9%
carb vs nonroad	2%	-6%	-11%	-5%	-37%
on-hwy vs nonroad	1%	47%	-4%	-2%	-29%
carb vs on-hwy	0%	-36%	-7%	-3%	-11%

APPENDIX O

Particulate Size Characterization

P.O. Drawer 28510 San Antonio, Texas 78228-0510

LOCOMOTIVE FUEL EFFECTS STUDY: PARTICULATE SIZE CHARACTERIZATION

Ву

Steven G. Fritz E. Robert Fanick

FINAL REPORT

Prepared for

CALIFORNIA AIR RESOURCES BOARD
STATIONARY SOURCE DIVISION - FUELS SECTION
P.O. BOX 2815
SACRAMENTO, CA 95814

JANUARY 2000

Reviewed:

Terry/L. Ullman, Manager

Department of Emissions Research

Automotive Products and

Emissions Research Division

Approved:

Charles T. Hare, Director

Department of Emissions Research

hales T. V

Automotive Products and

Emissions Research Division

LOCOMOTIVE FUEL EFFECTS STUDY: PARTICULATE SIZE CHARACTERIZATION

Ву

Steven G. Fritz E. Robert Fanick

FINAL REPORT

Prepared For

CALIFORNIA AIR RESOURCES BOARD
STATIONARY SOURCE DIVISION - FUELS SECTION
P.O. BOX 2815
SACRAMENTO, CA 95814

JANUARY 2000

FOREWORD

This project was performed for the California Air Resources Board (ARB) under SwRI Project 08-02062-003. The technical representative for ARB was Mr. Tony Brasil, Stationary Source Division - Fuels Section. The Principal Investigator was Mr. E. Robert Fanick, Senior Research Scientist, and the Project Manager for this work was Mr. Steven G. Fritz, Senior Research Engineer, both in the Department of Emissions Research. Mr. Michael J. Dammann, Group Leader in the Chemistry and Chemical Engineering Division, was responsible for the elemental analyses. SwRI technical personnel involved in engine operation, emissions sampling, and emissions analysis included Messrs. C. Eddie Grinstead, William L. Shackelford, and Ernesto San Miguel, all in the Department of Emissions Research. Ms. Yolanda Rodriguez and Ms. Kelley L. Strate performed the chemical analysis. Data reduction was performed by Ms. Kathleen M. Jack, Ms. Deborah A. Liston, and Ms. Sylvia G. Nino, also all in the Department of Emissions Research.

i

TABLE OF CONTENTS

			<u>Page</u>
FORI	EWORD		i
LIST	OF FIGURES .		iii
LIST	OF TABLES		iv
LIST	OF ABBREVIATI	IONS	v
EXE	CUTIVE SUMMAI	RY	vi
I.	INTRODUCTIO	ON AND BACKGROUND	1
II.	TECHNICAL AI	PPROACH	2
	B. Engine PC. Fuel ConD. Test Fuel	omotive	
III.	DESCRIPTION	OF ANALYTICAL METHODS	8
	B. DFI/GC f C. ICP/MS f D. IC for An 1. An	for Particle Size Distribution for VOF for Elemental Analysis nions and Cations nions – Sulfates, Nitrates, and Chlorides ations – Ammonium and Potassium	10 11 12 12
IV.	TEST RESULTS	S	13
	B. Volatile CC. Elementa D. Anions an 1. Cl 2. Ni 3. St 4. An	Size Distribution Organic Fraction (VOF) of Particulate al Analysis nd Cations hloride Ion Mass Emission Rate itrate Ion Mass Emission Rate ulfate Ion Mass Emission Rate mmonium Ion Mass Emission Rate otassium Ion Mass Emission Rate	
V.	SUMMARY		27

ii

LIST OF FIGURES

<u>Figu</u>	<u>Page</u>
1	Emissions Test Setup Used for Particulate Sampling
2	Isokinetic Particulate Sample Probe Used Within Dilution Tunnel
	For Particle Sizing Measurements
3	MOUDI Particle Size System Used at Locomotive Test Center
4	Particulate Collected on One of the Impaction Plates of a MOUDI Stage 9
5	GE Locomotive Engine Particulate Size Distribution
6	Particle Size Distribution at Idle
7	Particle Size Distribution at Notch 8
8	VOF at Idle
9	VOF at Notch 8
10	Chloride Ion Mass Emission Rate at Idle
11	Chloride Ion Mass Emission Rate at Notch 8
12	Nitrate Ion Mass Emission Rate at Idle
13	Nitrate Ion Mass Emission Rate at Notch 8
14	Dry Sulfate Ion Mass Emission Rate at Idle
15	Dry Sulfate Ion Mass Emission Rate at Notch 8
16	Ammonium Ion Mass Emission Rate at Idle
17	Ammonium Ion Mass Emission Rate at Notch 8
18	Potassium Ion Mass Emission Rate at Idle
19	Potassium Ion Mass Emission Rate at Notch 8

iii

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1	Selected Properties of the Two Locomotive Test Fuels
2	Test Fuel Metals Analysis Results
3	Elements Studies by ICP/MS
4	GE Locomotive Engine Particulate Emission Size Distribution Summary 14
5	Volatile Organic Fraction (VOF) of Particulate
6	Exhaust Anion and Cation Mass Emissions
7	Sulfate Mass Emission Summary

ίV

LIST OF ABBREVIATIONS

AAR Association of American Railroads
ARB California Air Resources Board
API American Petroleum Institute

ASTM American Society for Testing and Materials

BTU British Thermal Unit °C degrees Centigrade cc cubic centimeter

CFR Code of Federal Regulations

cSt centistokes

DFI/GCTM direct filter injection, gas chromatography

EMD Electro-Motive Division of General Motors Corporation

EP end point

EPA U.S. Environmental Protection Agency

°F degrees Fahrenheit
FID flame ionization detector
FTP Federal Test Procedure

g gram gal gallon

GE Transportation Systems Division of the General Electric Company

H₂O water

hp horsepower

hr hour

IBP initial boiling point IC Ion Chromatography

ICP/MS inductively-coupled plasma/mass spectroscopy

in inch
L liters
lb pound
min minute
mm millimeter

MOUDI micro-orifice uniform deposition impactor

NIST National Institute of Standards and Technology

OEM original equipment manufacturer

PM particulate matter ppm parts per million

sec seconds

SOF soluble organic fraction SwRI Southwest Research Institute

UP Union Pacific Railroad VOF volatile organic fraction

wt weight % percent

Fm micrometer $(1 \times 10^{-6} \text{ meter})$, micron

EXECUTIVE SUMMARY

This report documents results from exhaust particulate size distribution measurements performed on a 4,400 hp General Electric model DASH9-44CW diesel locomotive engine. This locomotive (UP No. 9724) was one of six locomotives tested for the California Air Resources Board (ARB) as part of a fuel effects study.

For the particulate size determination work reported herein, two fuels were compared; CARB diesel and a nonroad diesel fuel with a fuel sulfur level of 0.3 percent (3,190 ppm). These fuels were two of the four fuels used in the ARB locomotive fuel effects study. Tests were run at only two operating conditions: Idle and Notch 8 (rated power). Particle size distribution was measured using a Model 110 micro-orifice uniform deposit impactor (MOUDI). Additional analysis of the size-segregated particulate included determination of the volatile organic fraction (VOF), elemental analysis, and anion and cation analyses.

Less than one percent of the particulate for both fuels was larger than 2.5 Fm (PM $_{2.5}$), at both Idle and Notch 8. As expected, the total particulate mass rate was higher with the 0.3 percent sulfur nonroad diesel fuel at both operating conditions. One significant finding of this study was that the PM mass emission rates were similar for both fuels down to a particle size of 0.17 Fm. Most of the difference in total PM observed between the two fuels occurred in the smaller size ranges, 0.17 Fm to 0.09 Fm, 0.09 Fm to 0.056 Fm, and less than 0.056 Fm, where the 0.3 percent sulfur fuel had significantly higher mass emission rates. Subsequent analysis of the PM samples showed that the increased PM at the smaller size fractions was largely attributed to fuel-derived portion of the VOF and to sulfate emissions. Another interesting finding from this study was that for both fuels, the particle size distribution at Idle was monomodal, and at Notch 8 it was bimodal.

An elemental analysis was performed on selected size ranges, and only five elements detectable by XRF were present in enough quantity to be above detection limits. These elements were barium, manganese, nickel, sulfur, and zinc. The various metal elements were mostly attributed to engine wear metals, and the sulfur came from the fuel and lubricating oil. Except for sulfur, the metal elements contributed only a small fraction to the total particulate mass. At both Idle and Notch 8, most elements detected were in the 0.54 Fm to 0.31 Fm, 0.31 Fm to 0.17 Fm, and 0.17 Fm to 0.09 Fm particle size ranges.

For the anions and cations analyzed, sulfate was detected at the highest mass emission rates, especially with the higher sulfur fuel. Chloride, nitrate, and potassium ions were detected, but contributed only a small fraction to the total particulate mass.

SWRI REPORT 08.02062.003 Vİ

I. INTRODUCTION AND BACKGROUND

This project was an experimental program intended to characterize the size distribution of exhaust particles from a locomotive engine. Particulate characterization by particle size included the volatile organic carbon content, elemental analysis, and anion and cation mass emission rates. The work was performed to determine the particulate composition and how the particulate characteristics change in relation to the size of particle. Exhaust emission and fuel consumption measurements were performed using a 4,400 hp, General Electric (GE), model DASH9-44CW locomotive, provide by Union Pacific Railroad (UP).

The EPA definition of an engine exhaust particulate is any material collected on a fluorocarbon-coated glass fiber or fluorocarbon-based (membrane) filter, from a dilute exhaust stream, at a sample zone temperature less than 52EC (125EF). For particulate measurement, the engine's raw exhaust is typically diluted in a tunnel, which is generally about 8 to 18 inches in diameter and about 20 feet long. The dilution ratio generally ranges from 2:1 to 20:1, depending on engine operating conditions, tunnel air flow capacity, and system control characteristics required to meet the sample zone temperature requirements. For a given engine, the number and size of particles in the exhaust are functions of many variables including the sample probe location in the plume. The predominant size range in terms of total mass is larger than 0.1 micron, and in terms of number of particles, the predominant size is below 0.1 micron. The dependence of particle size and number on sample probe location is directly related to the temperature, dilution, and "age" of the particles. As engine exhaust cools, the higher molecular weight gaseous hydrocarbons begin to condense into aerosols, the particles tend to agglomerate, and adsorption of hydrocarbons may occur. Each mechanism results in larger and heavier particles.

In this study, the aerodynamic diameter is defined as the diameter of a unit density sphere (1 g/cc) having the same settling speed in air as the measured particle. Sizing devices such as cascade impactors use aerodynamic principles to size particles. In an impactor, a sample containing particles with a mixture of shapes and densities is fractionated and collected according to aerodynamic characteristics. As the sample stream passes through stages in the impactor with apertures of decreasing width or diameter, flow is accelerated and progressively smaller particles collect on impaction plates. Particles which are aerodynamically equivalent in size to the unit density spheres are collected on specific stages, calibrated under similar conditions. The mass collected on each stage indicates the percentage of particles within a specific aerodynamic diameter range.

II. TECHNICAL APPROACH

Testing was performed at the Southwest Research Institute (SwRI) Locomotive Exhaust Emissions Test Center in San Antonio, Texas. This unique facility was established in 1993 in cooperation with the Association of American Railroads (AAR), and is the only non-original equipment manufacturer (non-OEM) facility capable of performing locomotive exhaust emission tests.

Presented below is an overview of the technical approach used to conduct locomotive exhaust emissions testing for this study. A description of the locomotive selected for testing, engine power measurement, fuel consumption measurement, the test fuels used in this program, exhaust emissions test procedures, and particulate measurement procedures are also included. Analytical procedures for particulate characterization are included in Section III of this report.

A. <u>Test Locomotive</u>

Exhaust particulate size distribution measurements were performed on a General Electric (GE) model DASH9-44CW diesel locomotive engine. This locomotive, UP No. 9724, was one of six locomotives tested for the California Air Resources Board (ARB) as part of a fuel effects study. UP No. 9724 was manufactured in July 1994, and has the serial number 47870. It was equipped with a 4,400 hp, GE model 7FDL16N62, turbocharged diesel engine (SN 970815R), which was remanufactured by GE in August 1997.

B. <u>Engine Power Measurement</u>

Most line-haul locomotives are equipped with the "dynamic brake" feature in which the electric motors used for traction are reverse-excited to become generators to slow the train. The electrical power generated is dissipated in resistance grids. Those locomotives with the self-load feature can dissipate the main alternator power into these "dynamic brake" resistance grids. UP. No. 9724 was equipped with resistance load grids that were capable of loading the engine to its full power level of 4,400 hp.

The goal of power measurements was to compute the net engine power produced to perform work, referred to as flywheel or "gross" power. Gross power for the GE locomotive was recorded from the on-board computer display. Gross power represents the sum of "traction power" plus "auxiliary power."

C. <u>Fuel Consumption Measurement</u>

Diesel fuel consumption rate was measured on a mass basis, using a mass flow meter adapted from laboratory use at SwRI. The system was equipped with a heat exchanger to control fuel supply temperature to $90\pm10^{\circ}F$. Hot return fuel from the engine that normally returns to the locomotive fuel tank was cooled before returning to the fuel measurement reservoir ("day" tank) to assure consistent fuel supply temperature to the engine.

SWRI REPORT 08.02062.003 2

D. Test Fuels

Two fuels were used for this particulate characterization study. The first fuel was a 0.3 percent sulfur nonroad diesel fuel, with an aromatic level of about 40 percent and a cetane number of 44.5. The second fuel was a blend of two commercially available CARB diesel fuels with a sulfur level of 50 ppm (0.005 percent) and an aromatic content of 22 percent by volume. This fuel consisted of 8,000 gallons of commercially available CARB-approved diesel fuel from the Texaco refinery in Los Angeles, California plus another 8,000 gallons of commercially-available CARB-approved diesel fuel from the ARCO refinery in South Gate, California. Each fuel was delivered to the SwRI Locomotive Exhaust Emissions Test Center by truck and the fuels were mixed in a single railroad tank car. Table 1 gives selected properties for the two fuels. Table 2 gives the results of a metals analysis of the two fuels.

E. Regulated Exhaust Emissions Test Procedure

SwRI used the Federal Test Procedure (FTP) for locomotives as detailed in 40 CFR Part 92, Subpart B as the basis for emission measurement techniques. For this study, two throttle notch settings were used: Idle and Notch 8.

Particulate emissions were measured at each test point using a "split then dilute" technique, in which a portion of the raw locomotive exhaust was "split" off of the total flow and mixed with filtered air in a 10-inch diameter dilution tunnel. The split sample was transferred to the dilution tunnel through a 2-inch diameter stainless steel tube that was insulated and electrically heated to 375°F. This dilution tunnel was located at ground level, next to the locomotive, as shown in Figure 1. Particulate samples from the dilute exhaust were collected using an isokinetic sampling probe shown in Figure 2.

Before emission testing was started, the engine was first brought to operating temperature. This procedure involved operating the locomotive at Notch 8 for at least 15 minutes. After the warm-up period, testing began with Idle using the 0.3 percent sulfur fuel. Four consecutive repeat tests were performed to collect sufficient samples for the various analytical procedures. The engine was then brought to Notch 8, and the sequence of four consecutive tests was repeated. After a fuel change to the CARB diesel, the sampling sequence was repeated at Idle and Notch 8.

3

TABLE 1. SELECTED PROPERTIES OF THE TWO LOCOMOTIVE TEST FUELS

Determinations	ASTM Test Method	CARB Diesel EM-2663-F	0.3% Sulfur Nonroad Diesel EM-2708-F	EPA Locomotive Spec. ^a
API Gravity @ 60°F specific gravity density (lb/gal)	D4052	39.1 0.8295 6.92	34.1 0.8547 7.13	32 - 37 ns ns
Viscosity @ 40EC (cSt)	D445-83	2.46	2.77	2.0 - 3.2
Sulfur (Wt%)	D2622-94	0.005	0.319	0.2 - 0.4
Cetane Index	D976	52.0	46.5	40 - 48
Cetane Index	D4737	53.1	46.6	ns
Cetane Number	D613-84	51.0	44.5	40 - 48
Nitrogen Content (ppm)	D4629-96	8.4	220.1	ns
Heat of Combustion Gross (BTU/lb) Net (BTU/lb) Gross (BTU/gal) Net (btu/gal)	D240	19,715 18,479 136,400 127,900	19,440 18,240 138,600 130,100	ns ns ns ns
Carbon-Hydrogen Ratio % Carbon % Hydrogen Hydrogen/Carbon Ratio	D3178	86.37 13.63 1.880	86.77 13.23 1.818	ns ns ns
SFC Aromatics Total Mass % PNA Mass %	D5186-96	22.39 1.66	33.11 8.89	27 min.
Hydrocarbon Type Aromatics (%) Olefins (%) Saturates (%)	D1319-84	22.4 2.0 75.6	39.8 2.5 57.7	ns ns ns
Flash Point (°F)	D93-80	167	166	130 min.
Distillation	D86-96 % Recovered IBP 10 50 90 EP	Temp. °F 368 413 490 606 659	Temp. °F 375 426 513 620 672	Temp. °F 340 - 400 400 - 460 470 - 540 560 - 630 610 - 690

a - Diesel fuel for locomotive testing as specified by EPA in 40 CFR 92, §92.113, Table B113-1.
ns - not specified Note:

4

TABLE 2. TEST FUEL METALS ANALYSIS RESULTS

Element	ASTM Test Method	CARB Diesel EM-2663-F	0.3% Sulfur Nonroad Diesel EM-2708-F	
Fuel Metals Analysis				
Antimony, ppm		<1	<1	
Arsenic, ppm		<5	<5	
Beryllium, ppm	D5185	<2.5	<5	
Cadmium, ppm		<1	<1	
Chromium, ppm		<1	<1	
Cobalt, ppm		<2.5	<5	
Copper, ppm		<1	<1	
Lead, ppm		<1	1	
Manganese, ppm		<1	<1	
Mercury, ppm		<5	<5	
Nickel, ppm		<1	<1	
Selenium, ppm		<5	<5	

5

FIGURE 1. EMISSIONS TEST SETUP USED FOR SAMPLING PARTICULATE

FIGURE 2. ISOKINETIC PARTICULATE SAMPLE PROBE USED WITHIN DILUTION TUNNEL FOR PARTICLE SIZING MEASUREMENTS

7

III. DESCRIPTION OF ANALYTICAL METHODS

This section of the report describes the analytical methods used for assessing particle size distribution of particulate emissions, and the subsequent chemical characterization of the particulate collected.

A. MOUDI for Particle Size Distribution

Particle size distribution was measured using a Model 110 micro-orifice uniform deposit impactor (MOUDI) with an isokinetic sampling probe located within the dilution tunnel. The sample flow rate through the MOUDI was 30 L/min. Nine MOUDI stages were used to collect particulate having particle diameter cut-off of ranges of greater than 6.2 Fm, 3.1 to 6.2 Fm, 1.8 to 3.1 Fm, 1.0 to 1.8 Fm, 0.54 to 1.0 Fm, 0.31 to 0.54 Fm, 0.17 to 0.31 Fm, 0.09 to 0.17 Fm, and 0.056 to 0.09 Fm. The last stage was followed by a 47 mm Pallflex T60A20 backup filter to collect particles below 0.056 Fm. Figure 3 shows the MOUDI installed at the locomotive test center.

FIGURE 3. MOUDI PARTICLE SIZE SYSTEM USED AT LOCOMOTIVE TEST CENTER

The MOUDI operating principal is the same as any inertial cascade impactor with multiple nozzles. At each stage, jets of particle-laden dilute exhaust impinge upon an impaction plate. Particles larger than the mean diameter cut-size of that stage have inertia sufficient to cross the air streamlines to impact the plate. Upon contact with the plate, the particles remain on the impaction plate. Smaller particles have less inertia, cannot cross the streamlines, and proceed to the next stage. Smaller nozzles, with higher air velocity, are used to separate finer particles. The process continues through the cascade impactor until particles smaller than the last stage collection capability are collected on the final glass fiber backup filter. By rotating every other stage of the impactor and holding the others stationary, every nozzle plate rotates relative to its impaction plate. This relative rotation allows the MOUDI to achieve near uniform particle deposition on the impaction plates. Figure 4 shows particulate collected on one of the impaction plates of a MOUDI stage.

FIGURE 4. PARTICULATE COLLECTED ON ONE OF THE IMPACTION PLATES OF A MOUDI STAGE

For gravimetric particle size distribution and for the volatile organic fraction (VOF) determinations, uncoated aluminum foil plates were used to collect samples. These foils are the typical collection media used for the MOUDI system. Nucleopore substrates were used in place of the aluminum foil plates to collect samples for subsequent characterization of metals, cations, and anions. In all, four runs at each operating condition were performed. Run 1 used standard uncoated 47-mm aluminum foil plates to accumulate particulate. These filters were used for gravimetric mass determination. Run 2 also used uncoated 47-mm aluminum foil

plates. These plates were used to replicate data for gravimetric mass determination, and were then used to determine the volatile organic fraction (VOF) of the collected particulate. Run 3 used 47-mm Nucleopore filter media as plates, in place of the conventional aluminum foils. These filters were used for subsequent elemental analysis, as described below in Section III.C. Run 4 used a second set of 47-mm Nucleopore filter media. These filters were used for subsequent analysis for anions and cations, as described below in Section III.D.

B. DFI/GC for VOF

Direct filter injection gas chromatography (DFI/GC) was used to determine the VOF of the particulate at selected size fractions. VOF is defined in this study as organic material that responds on a flame ionization detector (FID), and has a boiling point of less than approximately 600EF. In addition, the contribution of unburned lubricating oil to VOF was also determined by an interpretive procedure based on simulated distillation boiling point distribution of a lubricating oil sample from the locomotive. The difference between the unburned oil derived VOF and the total VOF is a combination of unburned fuel, oxidized lubricating oil, and oxidized fuel components with a lower boiling temperature than the lubricating oil. For this study, the combination of these lower boiling components will be defined as "fuel-derived VOF".

Direct DFI/GC processing of the aluminum foil plates was not possible, so the material collected on each foil was transferred to 47-mm Pallflex T60A20 particulate filters for analysis. Lubricating oil from the locomotive was used to quantify the boiling point distribution of unburned lubricating oil contribution to the VOF.

VOF analyses were conducted using a Perkin Elmer Model 8500 gas chromatograph (GC) equipped with a uniquely designed filter injection system and a FID. Pallflex filters containing the samples transferred from the foils were placed into the injector, which was subsequently inserted into a cool zone of the DFI/GC to allow any oxygen in the system to be purged without losing any sample by desorption. When all oxygen had been purged from the system, the injector was pushed into a hot zone of the GC, where the volatile materials were desorbed and deposited into a cool column. A GC temperature program was then used to separate the volatilized compounds by boiling point. These compounds were then detected with a FID.

SWRI REPORT 08.02062.003 10

C. ICP/MS for Elemental Analysis

An inductively coupled plasma, mass spectroscopy (ICP/MS) method was used for determining the elemental content of particulate collected on selected MOUDI plates. Nucleopore filters or plates from individual stages were digested in a mixture of nitric and perchloric acid, followed by digestion with aqua regia. The resulting solution was analyzed by ICP/MS for the elements given in Table 3.

TABLE 3. ELEMENTS STUDIES BY ICP/MS

Aluminum - Al	Antimony - Sb	Arsenic - As
Barium - Ba	Beryllium - Be	Bismuth - Bi
Boron - B	Cadmium - Cd	Calcium - Ca
Chromium - Cr	Cobalt - Co	Copper - Cu
Galium - Ga	Gold - Au	Indium - In
Iron - Fe	Lanthanum - La	Lead - Pb
Lithium - Li	Magnesium - Mg	Manganese - Mn
Mercury - Hg	Molybdenum - Mo	Nickel - Ni
Palladium - Pd	Phosphorus - P	Potassium - K
Ruthenium - Ru	Selenium - Se	Silicon - Si
Silver - Ag	Sodium - Na	Strontium - Sr
Yttrium - Y	Thallium - Tl	Thorium - Th
Tin - Sn	Titanium - Ti	Tungsten - W
Uranium - U	Vanadium - V	Zinc - Zn
Zirconium - Zr		

The ICP/MS instrument was standardized using reference materials that were traceable to the National Institute of Standards and Technology (NIST). Prior to the analysis of any samples, the standardization was also verified with a second NIST traceable reference material. This second standard was from a different lot or manufacturer than the standardization material, and served as a check sample. Immediately after a check sample was run, a blank sample was also run to verify the zero setting of the standardization. The check sample was required to be within the control limits of 90-110 percent recovery of the certified value. The absolute value of the check blank was required to be below the reporting limit for the samples. If either condition was not met, the analysis was terminated and the instrument re-standardized and re-checked. The check sample and check blank were re-run after every ten samples and at the end of the run to ensure that the instrument remained in control throughout the entire run of ten samples. The same control limits were used for the continuing check samples. If a continuing check sample fell out of the control limits, the analysis was terminated, the instrument re-standardized, and all samples processed since the

SWRI REPORT 08 02062 003 11

last compliant check sample were re-run. Detection limits were on the order of 1 to $5 \, \text{Fg/filter}$ for most elements.

D. IC for Anions and Cations

Anions and cations accumulated on each Nucleopore filter impactor plate were quantified using an ion chromotography (IC) process, where selected stages were extracted by shaking each Nucleopore filter in a solution of 60 percent isopropanol (IPA) and 40 percent water. Analyses of the extracted anions and cations were conducted using an IC equipped with a conductivity detector.

1. Anions -- Sulfate, Nitrate, and Chloride Ions

Sulfuric acid on the filter was converted to ammonium sulfate by exposure to ammonia vapor in a conditioning chamber. The soluble sulfates and other anions were then leached from the filter with a measured volume of 60 percent IPA and 40 percent water. An aliquot of this extract was injected via autosampler into an IC. Anions were separated by analytical column with a dilute solution of sodium bicarbonate and sodium carbonate as the eluent, and then passed through a conductivity detector. The retention time on column provide identification of the anions, with the intensity of the signal corresponding to the concentration of the anion detected.

2. Cations -- Ammonium and Potassium Ions

Cations were analyzed in a similar manner as the anions except the eluent was nitric acid. The soluble cations were leached from the Nucleopore filter with a measured volume of 60 percent IPA and 40 percent water. An aliquot of this extract was injected via autosampler into an IC. Cations were separated by analytical column, and passed through a conductivity detector. The retention time on column provided identification of the cations, with intensity of the signal corresponding to the cation concentration.

SWRI REPORT 08.02062.003 12

IV. TEST RESULTS

A. Particle Size Distribution

Table 4 summarizes the results of the GE locomotive particle size distribution at Idle and Notch 8 for both fuels. Given are particulate matter (PM) mass emission rates in ten discrete particle size ranges, and a total particulate mass rate, which is the sum of all the stage fractions collected plus the backup filter.

As described in Section III.A of this report, duplicate tests were performed using the standard foil media and Nucleopore media in the MOUDI at each of the two operating conditions, and for each of the two test fuels. The data in Table 4 shows that the particle size distribution obtained with the foil plates and the Nucleopore media as an impaction plate yielded similar results, although the sum of the stage values (the total PM emission rate) was consistently higher when using the Nucleopore media compared to the foil plates. Table 4 also contains the PM rate for each test condition and fuel that is based on conventional PM sampling techniques using 90mm Pallflex T60A20 filter media. The value reported as "Total PM by 90mm" is the average of triplicate tests reported to the ARB as part of the main test program on this locomotive. Comparing the 90mm PM results to the PM totals by the MOUDI show that the Nucleopore media seemed to agree better than the foils, with the possible exception of the first Notch 8 run with the 0.3 percent sulfur fuel, where the total PM by MOUDI was almost twice as high as the 90 mm PM. Comparing the PM totals by MOUDI using foil plates are often compared against total PM measured with conventional sampling systems, and MOUDI total PM values are typically in the range of 60 to 90 percent of those measured by conventional 90mm filters. In this case, the Nucleopore filters used as impaction plates seemed to collect more mass at each stage compared to the foil plates, although the size distributions were similar. Due to the fact that the foil plates are the collection media typically used in MOUDI sampling, the following discussion of particle size is based on data using the foils.

The duplicate runs using the foil media were averaged, and the results are presented in Figure 5, in percentages of total PM mass as a function of particle size. At Idle, for both fuels, about 1 percent of the total PM mass was from particles larger than 2.5 Fm. At Notch 8, less than 1 percent of the total PM mass was from particles larger than 2.5 Fm, for both fuels. Figure 5 also shows that the 0.3 percent sulfur fuel had a larger percentage of smaller particles than the CARB diesel, at both Idle and Notch 8. Also, there was a larger fraction of smaller particles at Notch 8 than at Idle.

Figure 6 shows the particulate mass emission rate during Idle operation as a function of particle size, based on the aluminum foil collection plates. Both fuels exhibited a monomodal distribution, with the largest mass fraction at the 0.31 to 0.54 Fm size range. The PM mass emission rate was higher with the 0.3 percent sulfur fuel at all size ranges except at the 0.17 to 0.31Fm size range.

TABLE 4. GE LOCOMOTIVE ENGINE PARTICULATE EMISSION SIZE DISTRIBUTION SUMMARY

		0.3% Sulfur N	Nonroad Diesel	CARB Diesel							
_			Low Idle	PM Emissions, g/h	nr						
PM Size Range, Fm	PM Size Range, Fm Foil Foil Nucleopoi Run 1 Run 2 Run 1			Nucleopore Run 2	Foil Run 1	Foil Run 2	Nucleopore Run 1	Nucleopore Run 2			
> 6.2	0.00	0.00	2.71	2.76	0.00	0.08	1.35	0.72			
3.1 to 6.2	0.36	0.36	2.44	2.21	0.00	0.11	1.04	0.62			
1.8 to 3.1	0.41	1.61	3.61	1.98	0.00	0.00	1.31	0.57			
1.0 to 1.8	0.41	1.52	1.35	3.22	0.24	0.00	1.70	1.13			
0.54 to 1.0	0.68	2.50	5.33	3.54	0.93	0.49	2.08	1.75			
0.31 to 0.54	11.34	14.42	11.42	11.77	12.23	9.86	12.56	13.15			
0.17 to 0.31	8.45	8.57	13.68	13.52	11.79	6.81	14.26	12.17			
0.09 to 0.17	4.70	7.95	9.03	10.12	2.37	1.39	3.74	3.56			
0.06 to 0.09	2.21	2.37	4.74	4.14	0.84	0.56	2.27	1.96			
< 0.06	06 1.76 3.04 2.21		1.52	0.76	0.45	0.92	0.77				
Total PM by MOUDI	UDI 30.32 42.32 53.81		52.02	29.17	19.68	39.88	35.68				
Total PM by 90 mm ^a		,		48							
			Notch 8	PM Emissions, g/h	r						
> 6.2	6.43	2.77	47.76	25.12	3.07	0.00	0.00	24.71			
3.1 to 6.2	0.00	0.00	95.51	19.53	0.00	0.00	21.54	12.35			
1.8 to 3.1	2.57	0.00	78.06	17.67	2.30 0.00		15.38	27.02			
1.0 to 1.8	0.00	2.77	110.21	32.56	0.00	1.58	23.08	27.79			
0.54 to 1.0	3.86	3.70	138.68	60.46	4.60	0.00	19.23	23.93			
0.31 to 0.54	69.44	92.47	175.41	143.25	76.67	76.78	86.92	101.14			
0.17 to 0.31	39.86	58.25	177.25	85.58	45.24	40.37	66.15	66.40			
0.09 to 0.17	115.74	115.58	195.62	156.28	69.00	44.33	76.15	54.04			
0.06 to 0.09	102.88	114.66	117.55	141.39	68.24	51.45	79.23	57.90			
< 0.06	61.73	54.55	59.70	48.37	30.67	29.29	30.00	36.29			
Total PM by MOUDI	396.07	441.99	1147.99	705.11	296.71	243.81	417.68	406.87			
Total PM by 90 mm ^a		6	646			4	109				
Notes: a - Total PM by 90 mm	is the average of t	he triplicate rups m	ado durina rogulatod	omiccione toeting of	IID No. 0724, as mo	acurad ucina 00mm	Palifloy T60A20 filtors				

FIGURE 5. GE LOCOMOTIVE ENGINE PARTICLE SIZE DISTRIBUTION

Figure 7 shows the particulate mass emission rate during Notch 8 operation as a function of particle size, based on the aluminum foil collection plates. Comparing Idle to Notch 8, there is a noticeable shift in the particle size distribution toward smaller particles, and the total mass emission rate is about an order of magnitude higher. At Notch 8, less than 3 percent of the particulate mass emission was above 0.54 Fm for both fuels. An interesting characteristic of the size distribution at Notch 8 is that it was bimodal for both fuels, with one peak at 0.31 to 0.54 Fm size range, like that observed at Idle, but with a second peak around the 0.09 to 0.17Fm size range. It is at this peak in the smaller particle size range where the greatest difference in PM emissions between the two fuels was observed, with PM mass emissions with the 0.3 percent sulfur fuel nearly twice as high as the CARB diesel in the three size ranges below 0.17 Fm.

FIGURE 6. PARTICLE SIZE DISTRIBUTION AT IDLE

FIGURE 7. PARTICLE SIZE DISTRIBUTION AT NOTCH 8

B. <u>Volatile Organic Fraction (VOF) of Particulate</u>

Stages with mean diameter ranges of 0.54 Fm to 0.31 Fm, 0.31 Fm to 0.17 Fm, and 0.17 Fm to 0.09 Fm for Idle were analyzed by DFI/GC for VOF. At Notch 8, the same three stages used in Idle VOF analysis, plus the 0.09 Fm to 0.056 Fm stage, and the less than 0.056 Fm backup filter were examined. Particulate mass loadings for the other stages were too small to permit particulate characterization by VOF. The DFI/GC procedure provides a result based on the percentage of total PM that is VOF. In this case, the percentage of the PM was measured using the MOUDI foil plates. The percent VOF determined for each stage was applied to the average PM emission of the two runs made with the foil plates at each test condition. The VOF results are presented in Table 5, and in Figures 8 and 9.

TABLE 5. VOLATILE ORGANIC FRACTION (VOF) OF PARTICULATE

Engine Condition	Fuel	Average Total Particulate, g/hr	articulate, Range, Fm VOF g/hr Unburned					Fuel-Derived VOF, g/hr
	0.00/		0.54-0.31	9.2	3.9	32	1.3	2.6
	0.3% Sulfu	36	0.31-0.17	7.3	3.1	21	0.7	2.4
Idle	r		0.17-0.09	3.6	1.5	4	0.1	1.4
	0.15		0.54-0.31	4.9	1.0	40	0.4	0.6
	CAR B	24	0.31-0.17	6.8	1.3	18	0.2	1.1
	Diese I		0.17-0.09	4.0	0.8	6	0.04	0.8
			0.54-0.31	6.3	27.7	15	4.2	23.5
		419	0.31-0.17	8.3	36.0	9	3.2	32.8
	0.3% Sulfu		0.17-0.09	10.5	45.9	15	6.9	39.0
Notch 8	r		0.09-0.056	5.5	23.9	4	1.0	22.9
			<0.056	8.1	35.2	29	10.2	25.0
			0.54-0.31	7.0	17.1	22	3.8	13.3
			0.31-0.17	9.1	22.0	21	4.6	17.4
	CAR B	270	0.17-0.09	7.4	17.9	25	4.5	13.4
	Diese I		0.09-0.056	6.0	14.5	12	1.7	12.8
			<0.056	8.2	20.1	42	8.4	11.7

The data given in Table 5 shows that the VOF of the PM emissions from the GE engine is relatively low, and makes up only 5 to 10 percent of the total PM mass. Figures 8 and 9 show that the VOF is largely fuel-derived, at both Idle and Notch 8. The mass rate of unburned lubricating oil-derived VOF was generally similar for both fuels, especially during Notch 8 operation. At Idle, the lubricating oil derived VOF was higher with the 0.3 percent sulfur diesel fuel, compared to the CARB diesel, with notable increases observed at the two larger size ranges analyzed. At Notch 8, the largest contribution to the VOF from unburned lubricating oil was at the smallest size range analyzed, which was less than 0.056 Fm.

FIGURE 8. VOF AT IDLE

FIGURE 9. VOF AT NOTCH 8

C. <u>Elemental Analysis</u>

MOUDI stages using Nucleopore filters and with particle sizes of 0.54 Fm to 0.31 Fm, 0.31 Fm to 0.17 Fm, and 0.17 Fm to 0.09 Fm for Idle were analyzed by ICP/MS for selected elements. At Notch 8, the same stages, plus the 0.09 Fm to 0.056 Fm stage, and the less than 0.056 Fm backup filter were examined. Particulate mass loadings for the other stages were too low to permit particle characterization. A total of 44 elements were analyzed for, but most were below their detection limit.

Appendix A gives the tabulated results of the elemental analysis on selected MOUDI stages. Only four elements (barium, magnesium, potassium, and sulfur) were above the detection limit for the stages analyzed, and only sulfur was found repeatedly. Several elements were found at trace levels, defined as being present above the detection limit, but at a concentration less than three times the detection limit.

D. Anion and Cation Emissions

MOUDI stages with size ranges of 0.54 Fm to 0.31 Fm, 0.31 Fm to 0.17 Fm, and 0.17 Fm to 0.09 Fm for Idle were analyzed by IC for anion and cation emissions. At Notch 8, the same three stages, plus the 0.09 Fm to 0.056 Fm range were examined. Particulate mass loadings for the other stages were too small to permit analysis. The anions included chloride, nitrate, and sulfate ions; and the cations included ammonium and potassium ions. Analyses for bromine were also conducted, but no bromine was found in any of the samples. Table 6 presents the results for the anions and cations by particle size distribution.

TABLE 6. EXHAUST ANION AND CATION MASS EMISSIONS

Engine Condition	Fuel	Particle Size Range, Fm	Chloride Ion, mg/hr	Nitrate Ion, mg/hr	Dry Sulfate Ion, mg/hr	Ammonium Ion, mg/hr	Potassium Ion, mg/hr	
		0.54 - 0.31	1.8	6.8	70	91	34	
	0.3% Sulfur	0.31 - 0.17	ND^1	3.9	110	130	ND	
Idle		0.17 - 0.09	ND	9.8	120	170	120	
	0.4.D.D	0.54 - 0.31	15	3.6	36	120	ND	
	CARB diesel	0.31 - 0.17	6.6	2.9	26	33	96	
		0.17 - 0.09	ND	12	17	ND	160	
		0.54 - 0.31	43	110	4,600	2,700	1,500	
	0.3%	0.31 - 0.17	17	93	5,100	3,800	2,700	
	Sulfur	0.17 - 0.09	130	46	31,000	9,500	lon, mg/hr 34 ND 120 ND 96 160 1,500	
Notch 8		0.09 - 0.056	ND	140	33,000	11,000	2,300	
NOIGH		0.54 - 0.31	230	170	1,500	580	69	
	CARB	0.31 - 0.17	29	55	1,200	570	1,800	
	Diesel	0.17 - 0.09	90	100	2,900	2,500	ND	
		0.09 - 0.056	230	88	3,500	3,500	ND	
Notes: 1 - N	ND-none	detected; below	detection lim	it.			-	

1. Chloride Ion Mass Emission Rates

Figures 10 and 11 show the chloride ion mass emission rates by particle size distribution for the two engine conditions. The chloride ion mass emission rates using CARB fuel were higher than for the 0.3 percent sulfur nonroad diesel fuel at both Idle and Notch 8.

Chloride ion mass emission rates at Notch 8 were the lowest for the $0.31\,\mathrm{Fm}$ to $0.17\,\mathrm{Fm}$ particle size range. At the $0.09\,\mathrm{Fm}$ to $0.056\,\mathrm{Fm}$ range with the 0.3 percent sulfur fuel, no chloride ion was detected. The chloride ion mass emissions were also greater for all size ranges with the CARB fuel, except for the $0.17\,\mathrm{Fm}$ to $0.09\,\mathrm{Fm}$ range at Notch 8.

FIGURE 10. CHLORIDE ION MASS EMISSION RATE AT IDLE

FIGURE 11. CHLORIDE ION MASS EMISSION RATE AT NOTCH 8

2. Nitrate Ion Mass Emission Rates

Figures 12 and 13 show the various nitrate ion mass emission rates by particle size distribution for the two engine conditions. Nitrate ion mass emission rates at Notch 8 were at least one order of magnitude greater than at Idle for both fuels. The differences in nitrate ion mass emission rates between the two fuels for all size ranges did not appear to be related to the nitrogen content in the fuel.

FIGURE 12. NITRATE ION MASS EMISSION RATE AT IDLE

FIGURE 13. NITRATE ION MASS EMISSION RATE AT NOTCH 8

3. Sulfate Ion Mass Emission Rates

To isolate the specific effect of fuel sulfur content on change in particulate emissions, sulfate analyses were performed. Sulfate emissions are summarized in Table 7. Sulfate is reported here as "wet" sulfate, because sulfate is generally composed of sulfuric acid, H_2SO_4 , with associated bound water. The hydration state of the sulfuric acid is very sensitive to the relative humidity in the PM filter weighing chamber. At 50 percent relative humidity in the weighing chamber, the hydration of one gram of sulfuric acid results in 1.3 grams of water per gram of H_2SO_4 . This hydration means that the fraction of the total particulate mass due to the sulfate is 2.3 times the mass of the "dry" sulfate alone, because of the associated water.

Results given in Table 7 show that at Idle, sulfates contribute only a small percentage of the total PM, independent of the fuel. At Notch 8, however, sulfate made up over half of the total PM at the size range 0.09 to 0.056 Fm while using the 0.3 percent sulfur nonroad diesel fuel. For CARB diesel, which had a sulfur content of 50 ppm, sulfates contributed only 14 percent of the total PM at the same size range.

TABLE 7. SULFATE MASS EMISSION SUMMARY

Engine Condition	Fuel	Particle Size Range, Fm	Total ^a PM, mg/hr	"Dry" Sulfate, mg/hr	"Wet" Sulfate⁵, mg/hr	"Wet" Sulfate, % of total PM
	0.00/	0.54 - 0.31	12,000	70	160	1
	0.3% Sulfur	0.31 - 0.17	14,000	110	260	2
Idle		0.17 - 0.09	10,000	120	280	3
10.0	0400	0.54 - 0.31	13,000	36	82	0.6
	CARB diesel	0.31 - 0.17	12,000	26	59	0.5
		0.17 - 0.09	3,600	17	38	1
		0.54 - 0.31	140,000	4,60	11,000	7
	0.3%	0.31 - 0.17	86,000	5,100	12,000	14
	Sulfur	0.17 - 0.09	160,000	31,000	71,000	45
Notch 8		0.09 - 0.056	140,000	33,000	75,000	53
Noterro		0.54 - 0.31	100,000	1,500	3,400	3
	CARB	0.31 - 0.17	66,000	1,200	2,600	4
	Diesel	0.17 - 0.09	54,000	2,900	6,800	13
		0.09 - 0.056	58,000	3,500	8,000	14

Notes: a - Total PM for each MOUDI stage using Nucleopore filter media.

b - "wet" sulfate equals 2.3x "dry" sulfate.

Figures 14 and 15 show the sulfate mass emission rates by particle size distribution for the two engine conditions. The sulfate ion mass emission rates at Idle increased with decreasing particle size for the 0.3 percent sulfur fuel, and decreased with decreasing particle size with the CARB diesel.

Sulfate ion mass emission rates at Notch 8 increased with decreasing particle size for both fuels. The mass emission rates for sulfate ion with the 0.3 percent sulfur fuel were almost a factor of five times greater than with the CARB diesel.

FIGURE 14. DRY SULFATE ION MASS EMISSION RATE AT IDLE

FIGURE 15. DRY SULFATE ION MASS EMISSION RATE AT NOTCH 8

4. Ammonium Emissions

Figures 16 and 17 show ammonium ion mass emission rates by particle size distribution for the two engine conditions. Ammonium mass emission rates at Idle increased with smaller particle size for the 0.3 percent sulfur fuel, and decreased with smaller particle size range with the CARB diesel. Overall, ammonium mass emissions were greater for the 0.3 percent sulfur fuel, except for the 0.54 to 0.31 Fm size range for CARB diesel. Ammonium ion mass emissions at Notch 8 increased with decreasing particle size for both fuels.

FIGURE 16. AMMONIUM ION MASS EMISSION RATE AT IDLE

FIGURE 17. AMMONIUM ION MASS EMISSION RATE AT NOTCH 8

5. Potassium Ion Mass Emission Rates

Figures 18 and 19 show potassium ion mass emission rates by particle size distribution for the two engine conditions. No trends were noted in the potassium ion mass emission rates for any particle size range with either fuel or engine operating condition.

FIGURE 18. POTASSIUM ION MASS EMISSION RATE AT IDLE

FIGURE 19. POTASSIUM ION MASS EMISSION RATE AT NOTCH 8

V. SUMMARY

Testing was performed to provide the ARB with data on the characterization of total particulate for various particle size fractions from a 4,400 hp GE locomotive. Two fuels were used in this study, a 0.3 percent sulfur nonroad diesel, and a CARB diesel. Sampling for particle sizing was conducted at two different operating conditions, Idle and Notch 8. Particulate characterization by particle size included volatile organic content, elemental analysis, and anion and cation levels.

Less than one percent of the particles were larger than 2.5 Fm for both fuels. The particle size distribution at Idle was monomodal, and at Notch 8 it was bimodal.

Total particulate mass emission was higher with the higher sulfur fuel for both operating conditions. Particulate emissions by particle size were similar for both fuels, down to a particle size range between $0.31\,\mathrm{Fm}$ to $0.17\,\mathrm{Fm}$. At the smaller size ranges ($0.17\,\mathrm{Fm}$ to $0.09\,\mathrm{Fm}$, $0.09\,\mathrm{Fm}$ to $0.056\,\mathrm{Fm}$, and less than $0.056\,\mathrm{Fm}$), the CARB fuel produced lower masses of particles. This difference was also reflected in the fuel-derived VOF and the sulfate contribution to the total particulate mass. The sulfate mass emission rate was proportional to the fuel sulfur level.

Only five of 44 chemical elements were noted above the detection limit for the particle size ranges analyzed. The metal elements were mostly attributed to engine wear metals, and sulfur was associated with the fuel and lubricating oil. Except for sulfur, the metal elements were only a small fraction of the total particulate. At Idle and Notch 8, most of the detected elements were found in the larger particle size ranges (0.54 Fm to 0.31 Fm, 0.31 Fm to 0.17 Fm and 0.17 Fm to 0.09 Fm).

When operating at Idle, the 0.3 percent sulfur fuel showed a decrease in the VOF with decreasing particle size, while the CARB diesel yielded the highest VOF mass rate in the intermediate 0.31 Fm to 0.17 Fm size range. The percent of VOF attributed to unburned lubricating oil decreased with smaller particle sizes for both fuels at Idle, with the largest contribution occurring in the 0.54 Fm to 0.31 Fm size range. No consistent trends were noted for the Notch 8 condition.

For Notch 8, the average total particulate mass rate and the VOF were larger with the 0.3 percent sulfur fuel than with CARB diesel. Unburned lubricating oil derived VOF contributed about 57 percent of the VOF for the 0.3 percent sulfur fuel and about 64 percent for CARB diesel. At Notch 8, the unburned lubricating oil derived VOF was similar for both fuels, with the highest levels found in particles less than 0.056 Fm. The higher VOF levels with the 0.3 percent sulfur fuel were mostly fuel-derived VOF.

For the cations and anions, sulfate was highest with the higher sulfur fuel. Chloride, nitrate, and potassium ions were found to be only a small fraction of the total particulate. The mass emission rates for each ion were higher at Notch 8 than at Idle.

APPENDIX A ELEMENTAL ANALYSIS RESULTS

Element Name	Element Symbol	Detection Filter No.= Limit Fuel = (μg/filter) Test Run # = PM Size Range, μm	9226.6-895 HS R2 0.54 - 0.31	HS R2	9228.6-897 HS R2 0.17 - 0.09	9244.6-913 HS R6 0.54 - 0.31	9245.6-914 HS R6 0.31 - 0.17	9246.6-915 HS R6 0.17 - 0.09	9247.6-916 HS R6 0.09 - 0.06	9266.1-845 HS R6 <0.06 Pallflex	9352.6-931 CARB R10 0.54 - 0.31	9353.6-932 CARB R10 0.31 - 0.17	CARB R10	9370.6-976 CARB R14 0.54 - 0.31	9371.6-977 CARB R14 0.31 - 0.17	9372.6-978 CARB R14 0.17 - 0.09	9373.6-979 CARB R14 0.09 - 0.06	9266.1-845 CARB R14 <0.06 Paliflex	47mm	Blank 37mm Pallflex
		Test Condition Sample Results, µg/filter	Idle	Idle	Idle	Notch 8	Idle	Idle	Idle	Notch 8										
Aluminum	Al	30	36.6	nd	nd	nd	nd	nd	nd	726	nd	nd	70.6	nd	33.5	nd	nd	625	0	649
Antimony	Sb	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Arsenic	As Ba	0.1 5	nd	nd 11.6	nd nd	nd	nd	nd	nd nd	nd 326	nd	nd	nd 17	nd	nd	nd nd	nd nd	nd 275	0	264
Barium Beryllium	Ве	0.05	10.2 nd	nd	nd	nd nd	nd nd	nd nd	nd	nd	nd nd	nd nd	nd	nd nd	nd nd	nd	nd	nd	0	0
Bismuth	Bi	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Boron	В	75	nd	nd	nd	nd	nd	nd	nd	919	nd	nd	nd	nd	nd	nd	nd	790	0	892
Cadmium	Cd	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Calcium	Ca	125	nd	134	nd	130	128	126	129	651	nd	nd	nd	nd	130	131	nd	571	129	632
Chromium	Cr	0.1	0.762	0.423	0.451	0.408	0.476	0.384	0.351	0.147	0.349	0.402	0.340	0.428	0.410	0.378	0.358	nd	0.52	0
Cobalt	Co	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Copper	Cu	0.1	nd	0.107	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Gallium	Ga	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Gold	Au	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Indium	In	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd		0
Iron	Fe	1 0.1	2.34	nd	1.1	nd	nd	nd	nd	1.44	nd	nd	nd	nd	nd	nd	nd	1.25	1.04	1.16
Lanthanum Lead	La Pb	0.05	0.152 nd	0.114 nd	0.385 nd	0.339 nd	0.134 nd	nd nd	nd nd	0.207 nd	0.145 nd	nd nd	nd nd	nd nd	nd nd	0.146 nd	nd nd	nd nd	0.126	0.204
Lithium	Li	0.03	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Magnesium	_	0.5	nd	nd	nd	nd	nd	nd	1.65	0.702	nd	nd	nd	nd	nd	nd	nd	1.02	0	1.09
Manganese		1	2.17	nd	nd	1.92	1.03	nd	nd	nd	nd	1.79	nd	1.24	1.01	2.16	nd	nd	ō	0
Mercury	Hg	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	Ó	0
Molybdenun	n Mo	0.1	nd	nd	nd	nd	0.153	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Nickle	Ni	0.1	0.265	nd	0.173	0.266	0.135	nd	nd	nd	nd	nd	0.239	nd	nd	nd	nd	nd	0	0
Palladium	Pd	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Phosphorus		0.25	nd	0.275	nd	nd	0.266	nd	nd	0.255	nd	nd	nd	nd	nd	nd	nd	0.416	0	0.266
Potassium	K	30	nd	nd	53.1	nd	47	nd	nd	1870	nd	nd	nd	nd	90.8	nd	75.9	1650	0	1630
Rubidium	Ru Se	0.05 0.15	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Selenium Silicon	Si	50	nd 85.3	nd 85.6	nd 55.5	nd 60.5	nd 77.1	nd 55	nd nd	nd 8840	nd nd	nd nd	nd 129	nd nd	nd 60.7	nd nd	nd nd	nd 7920	0	8170
Silver	Aa	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Sodium	Na	2	2.78	nd	2.12	nd	2.77	nd	2.16	57.9	nd	3.41	nd	nd	nd	nd	nd	94.3	0	108
Strontium	Sr	2.5	nd	nd	nd	nd	nd	nd	nd	13.8	nd	nd	nd	nd	nd	nd	nd	12.1	4.46	11.4
Sulfur	S	1	3.11	2.84	3.95	1.63	3.65	9.07	9.65	5.19	2.2	2.38	1.08	1.57	1.78	2.56	2.38	2.32	0	2.27
Thallium	TI	0.1	0.23	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Thorium	Th	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Tin	Sn	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Titanium	Ti	0.5	nd	nd	0.505	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Tungsten Uranium	W	0.15 0.05	nd nd	nd	nd	nd	nd	nd nd	nd nd	nd nd	nd	nd nd	nd	nd	nd	nd nd	nd nd	nd	0	0
Vanadium	V	0.05	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	0	0
Yttirum	Y	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	0
Zinc	Zn	2.5	3.74	6.96	nd	3.21	nd	nd	nd	378	nd	nd	3.45	nd	nd	nd	nd	367	0	421
Zireonium	Zr	0.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	
Bromide	Br-	5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0	ō
Chloride	CI	5	nd	nd	nd	13.5	5.2	nd	nd	nd	nd	8	8.9	nd	nd	nd	nd	nd	0	0

Element Name	Element Symbol	Filter No.= Fuel = Test Run # = PM Size Range, µm Test Condition	HS R2	9227.6-896 HS R2 0.31 - 0.17 Idle	HS R2	HS R6	HS R6	HS R6 0.17 - 0.09	HS R6	9266.1-845 HS R6 <0.06 Pallflex Notch 8	CARB R10	9353.6-932 CARB R10 0.31 - 0.17 Idle	CARB R10	CARB R14	CARB R14	CARB R14 0.17 - 0.09	CARB R14	9266.1-845 CARB R14 <0.06 Pallflex Notch 8
Aluminum	Al	Mass Emission Rate, µg/hr	Т							Т	Т	Т	Т	Т	Т	Т	Т	
Antimony	Sb																	
Arsenic Barium	As Ba		Т	Т						Т			655					т
Beryllium	Be												000					
Bismuth	Bi																	_
Boron	В																	
Cadmium	Cd																	
Calcium	Ca		т							Т								
Chromium Cobalt	Cr Co																	
Copper	Cu			Т														
Gallium	Ga																	
Gold	Au																	
Indium	In																	
Iron	Fe		Т															
Lanthanum					Т	Т												
Lead	Pb																	
Lithium	Li																	
Magnesium			Т			Т			1515			т						
Manganese Mercury	Mn Hg		'				Т							Т	Т	Т		
Molybdenum							Т											
Nickle	Ni		Т		Т	Т	Ė						т					
Palladium			-		•	-	•						-					
Phosphorus				Т			Т											
Potassium					Т		Т			Т					69842		Т	
	Ru																	
Selenium	Se		_	_	_	_	_	_		_			_		_			
Silicon	Si		T	T	T	T	T	T		T			T		T			
Silver Sodium	Ag Na		т		т		Т		Т			т						
Strontium	Sr		'						'									
Sulfur	S		140	т	178	Т	3352	8330	8862	Т	Т	Т	Т	Т	Т	Т	Т	
Thallium	TI		Т															
Thorium	Th																	
Tin	Sn																	
Titanium	Ti				Т													
Tungsten	W																	
Uranium	U																	
Vanadium Yttirum	V Y																	
Zinc	r Zn		т	Т		Т							т					
Zireonium	Zr			,									· ·					
Bromide	Br-																	
Chloride	CI					Т	Т					Т	Т					